進階搜尋


 
系統識別號 U0026-0812200913454577
論文名稱(中文) 兩種非混合孔隙流體對非飽和孔隙介質沉陷之影響
論文名稱(英文) Effect of two pore immiscible fluids on consolidation of partially-saturated porous media
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 董佩榕
研究生(英文) Pei-jung Tung
電子信箱 n8694408@mail.ncku.edu.tw
學號 n8694408
學位類別 碩士
語文別 中文
論文頁數 47頁
口試委員 指導教授-羅偉誠
口試委員-詹錢登
口試委員-陳禮仁
中文關鍵字 土壤沉陷  非混合流體  非飽和土壤 
英文關鍵字 immiscible fluids  unsaturated soils  consolidation 
學科別分類
中文摘要   本文討論兩種不可混合流體對非飽和土壤的沉陷所造成之影響,利用Tuncay和Corapcioglu (1996)由體積平均方法推導得到非飽和土壤的沉陷理論,以及Chen等人(1999)經由實驗與數值模式互相比較運用得到:兩種不可混合流體的毛細壓力與飽和度之函數、毛細壓力與滲透係數之函數參數值。並假設土體上層為自由排水液面,底層為不可透水層。垂直(z軸方向)施加壓力於土體,忽略其側向位移,只考慮垂直方向的沉陷,簡化三維理論模式成一維的情形。孔隙中兩種不可混合流體則使用空氣與水、油與水、空氣與油,三種互相不可混合之流體系統,配合傳統Richards’ equation的假設:假設水流中空氣的影響可忽略。
  經由數值模擬計算得到土壤孔隙率與土壤的總沉陷量和其統體模數(bulk modulus)有關,統體模數愈大的土壤(林肯砂土)愈不易受壓,土壤孔隙率的變化量較小,總沉陷量也比較小;相對的,土壤統體模數愈小(哥倫比亞砂質壤土),土壤比較容易受壓,孔隙率變化量較大,土壤的總沉陷量也較大。
  在時間上,非潤濕流體飽和度與土壤孔隙率都與之有關。土壤受壓時間愈長,非潤濕流體的飽和度變化量愈大,孔隙率變化量也愈大;反之亦然,土壤受壓時間較短時,非潤濕流體的飽和度與土壤孔隙率受到的影響較小,其變化量也都較小。
英文摘要  In this study we discuss the consolidation behavior of unsaturated soils bearing two immiscible fluids. Based on the results of Tuncay and Corapcioglus (1996) using the method of microscopic volume-averaging. We used the data obtained by Chen, et al. (1999) from experimental results of two-fluid flow, to estimate the parameters for water retention curve and hydraulic conductivity functions. The unsaturated soil examined here is assumed to have a free drainage surface on its top and an impervious surface on its base. Since lateral displacements are typically much smaller as compared to vertical displacements during the process of consolidation, the problem of one dimensional (vertical, z axle direction) representation is considered in the study. The system of two immiscible fluids considered her includes air-oil, air-water, and oil-water. Lastly, the influence of the air phase on water flow is neglected following the traditional Richards’ assumption.
 Two soils, Columbia fine sandy loam and Lincoln sand were test numerically. Our numerical results show that porosity change and the total settlement have a close relation to the bulk modulus of soils. Columbia fine sandy loam is the most prone to squeeze the pore fluids. The amount of fluids expelled diminishes as permeability decreases. On the other hand, Lincoln sand settles largest. When the bulk modulus becomes greater, the settlement decreases more. The porosity was found to have the same trend as the amount of the settlement.
 In addition, the saturation of the nonwetting fluid phase and the porosity are affected by the consolidation time. If the soils bear the stress which acts on the top longer, changes in the saturation of the nonwetting fluid phase and the porosity become more obvious. Oppositely, the soils bear the stress which acts on the top shorter, those changes are not obvious.
論文目次 中文摘要...................................................................................................................I
Abstract.................................................................................................................... II
誌謝........................................................................................................................ III
目錄........................................................................................................................IV
表目錄....................................................................................................................VI
圖目錄.................................................................................................................. VII
符號說明.................................................................................................................X
第一章 緒論............................................................................................................1
1-1 研究動機..............................................................................................................1
1-2 文獻回顧..............................................................................................................2
1-3 研究方法和目的..................................................................................................6
1-4 本文架構..............................................................................................................6
第二章 非飽和土壤沉陷理論模式........................................................................8
2-1 控制方程式..........................................................................................................8
2-2 一維土壤沉陷問題............................................................................................10
2-3 初始條件與邊界條件........................................................................................13
2-4 一維土壤沉陷問題之解析解............................................................................14
第三章 數值模擬..................................................................................................18
3-1 材料與方法........................................................................................................18
3-2 保水曲線 (Water retention curve).....................................................................20
3-3 相對滲透性函數................................................................................................22
3-4 土壤統體模數和剪力模數................................................................................23
3-5 其他相關參數及整理........................................................................................24
第四章 結果與討論..............................................................................................26
4-1 無因次孔隙壓力隨深度變化之結果討論........................................................26
4-2 不同時間的飽和度變化量隨深度變化之結果討論........................................28
4-3 不同時間的土壤孔隙率隨深度變化之結果討論............................................32
4-3-1 土壤孔隙率與時間的關係....................................................................32
4-3-2 土壤孔隙率與統體模數的關係............................................................34
4-3-3 土壤孔隙率與流體飽和度的關係........................................................35
4-4 不同飽和度的土壤總沉陷量隨深度變化之結果討論....................................36
第五章 結論與建議..............................................................................................39
5-1 結論....................................................................................................................39
5-2 建議....................................................................................................................40
參考文獻................................................................................................................41
自述........................................................................................................................46
參考文獻 李寬材,重訪德在基壓密論,地工技術雜誌,第13期,第13-26頁,1986。
柯凱元,抽水情形下未飽和砂性土壤沈陷性質之研究,國立臺灣大學農業工程學研究所碩士論文,1999。
蔡宏洋,土壤性質對非飽和土體沉陷之影像研究,國立成功大學水利及海洋研究所碩士論文,2006。

Aitchison, G. D., Relationship of moisture stress and effective stress functions in unsaturated soils, Pore Pressure and Suction in Soils, Butterworths, London, England, pp. 47-52, 1961.
Biot, M. A., General theory of three-dimensional consolidation, Volume 12, pp.155-164, 1941.
Bishop, A. W., The principle of effective stress, Teknik Ukeblad, Volume 39, pp.859-863, 1959.
Bishop, A. W., and G. E. Blight, Some aspects of effective stresses in saturated and partly saturated soils, Geotechnique, Volume 13, pp. 177-197, 1963.
Brooks, R. H., and Corey, A. T., Hydraulic properties of porous media, Hydrology Paper No.3, Civil Engineering Department, Colorado State University, Fort Collins, 1964.
Burdine, N. T., Relative permeability calculations from pore size distribution data, Pertroleum Trans. America Inst. Mining Engineering, Volume198, pp. 71-77, 1953.
Brutsaert, W., Some methods of calculating unsaturated permeability, Trans. ASCE, Volume 10, pp. 400-404, 1967.
Chen, J., Hopmans, J. W. and Grismer, M. E., Parameter estimation of two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources, Volume 22, No. 5, pp. 479-493, 1999.
Corapcioglu, M. Y., and J. Bear, A mathematical model for regional land subsidence due to pumping 3. Integrated equations for a phreatic aquifer, Water Resources Research, Volume 19, pp. 895-908, 1983.
Croney, D., Coleman, J. D., and Black, W. P. M., The movement and distribution of water in soil in relation to highway design and performance, Highway Research Board Special Report No. 40, Washington, D. C., 1958.
Das, B. M., Adcanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
Eching, S. O. and Hopmans, J. W., Optimization of hydraulic functions from transient outflow and soil water pressure data, Soil Science Society of America Journal, Volume 57, pp. 1167-1175, 1993.
Eching, S. O., Hopmans, J. W. and Wendroth, O., Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure data, Soil Science Society of America Journal, Volume 58, pp. 687-695, 1994.
Enrico Conte, Plane strain and axially symmetric consolidation in unsaturated soils, International Journal of Geomechanics, Volume 6, Issue 2, pp. 131-135, 2006.
Finsterle, S. and Pruess, K., Solving the estimation-identification problem in two phase flow modeling, Water Resources Research, Volume 31 pp. 913-924, 1995.
Fredlund, D, G., and J. U. Hasan, One-dimensional consolidation theory: unsaturated soils, Canadian Geotechnical Journal, Volume16, pp. 521-531, 1979.
Fredlund, D. G., and N. U. Morgenstern, Stress state variables for unsaturated soils, Journal of the Geotechnical Engineering Division, Volume 103, no. 5, pp. 447-466, 1977.
Gardner, W. R., Some steady state solutions of unsaturated moisture flow equations with application to evaporation from water table, Soil Science, Volume 85, pp. 228-232, 1958.
Geraminegad M., and S. K. Saxena, A coupled thermoelastic model for saturated-unsaturated porous media, Geotechnique, Volume 36, pp, 539-550, 1986.
Gibson, R. E., England, G. L. and Huessey, M. J. L., Theory of one dimension consolidation of saturated clay, Geotechnical, Volume 17, No. 3, pp. 261-273, 1967.
Girsang, C. H., A numerical investigation of the seismic response of the aggregate pier foundation system, Master Thesis Department of Civil Engineering, University of Virginia, Blacksburg, 2001.
Gutierrez, M. S., M. ASCE, and R. W. Lewis, Coupling of fluid and deformation in underground formations, Journal of Engineering Mechanics, Volume 128, no. 7, pp.779-787, 2002.
Jennings, J. E. B., A revised effective stress law for use in the prediction of the behavior of unsaturated soils, Pore Pressure and Suction in Soils, Butterworths, London, England, pp. 26-30, 1961.
Jennings, S. M., and J. B. Burland, Limitations of the use of effective stresses in partly saturated soils, Geotechnique, Volume 12, pp. 125-144, 1962.
Kim, J. M., Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media, Geoscience Journal, Volume 8, no. 3, pp. 291-300, 2004.
Kim, J. M., Three dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping, Water Resources Research, Volume 41, no.1, 2005.
Kohgo, Y., M. Nakano, and T. Miyazaki, Theoretical aspects of constitutive modeling for unsaturated soils, Soils and Foundations, Volume 33, no. 4, pp. 49-63, 1993.
Kosugi, K., Three-parameter lognormal distribution model for soil water retention, Water Resources Research, Volume 30, pp. 891-901, 1994.
Kosugi, K., Lognormal distribution model for unsaturated soil hydraulic properties, Water Resources Research, Volume 32, pp. 2697-2703, 1996.
Liu, Y.P., Hopmans, J. W., Grismer, M. E. and Chen, J. Y., Direct estimation of air-oil and oil-water capillary pressure and permeability relations from multi-step outflow experiments, Journal of Contaminant Hydrology, Volume 32, pp. 21-42, 1998.
Lloret A. and E. E. Alonso, Consolidation of unsaturated soils including swelling and collapse behavior, Geotechnique, Volume 30, pp. 449-477, 1980.
Lo W.C., Two-phase flows in deformable porous media, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, 2005.
Luckner, L., van Genuchten, M. Th. and Nielsen, D. R., A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resources Research, Volume 25, pp. 2187-2193, 1989.
Muakem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Volume 10, pp. 400-404, 1976.
Rossi, C., and J. R. Nimmo, Modeling of soil water retention from saturation to oven dryness, Water Resources Research, Volume 30, no. 3, pp. 701-708, 1994.
Russo, D., Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties, Water Resources Research, Volume 24, pp. 453-459, 1988.
Sattler, P.J. and Fredlund, D. G., Numerical modelling of vertical ground movements in expansive soils, Canadian Geotech. Journal, Volume 28, pp.189-199, 1991.
Tadepalli, R., Rahardjo, H. and Fredlund, D. G., Measurements of matric suction and volume changes during inundation of collapsible soil, Geotechnical Testing Journal, pp 115-122, 1992.
Terzaghi, K., Die berechnung der durchlaessigkeitsziffer destones aus dem verlauf der hydrodynamicschen spannungserscheinungen(AbtIIa), Sitzbericht, Akademia der Wissenschaften, Vienna, Austria, 132, 1923.
Tuncay, K. and M. Y. Corapcioglu, Consolidation of elastic porous media saturated by two immiscible fluids, Journal of Engineering Mechanics, Volume 122, no. 11, pp. 1077-1085, 1996.
van Genuchten, M. Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Volume 44, no. 5, pp. 892-898, 1980.
van Genuchten, M. Th., Calculating the unsaturated hydraulic conductivity with a new closed-form analytical model, Res. Rep. 78-WR-08, Department of Civil Engineering, University, Princeton NJ, 1978.
Wong, T. T., D. G. Fredlund, and J. Krahn, A numerical study of coupled consolidation in unsaturated soils, Canadian Geotechnical Journal, Volume 35, pp. 926-937, 1998.
Zhang, X. and Lytton R. L., Stress state variables for saturated and unsaturated soils, Unsaturated Soils 2006, Carefree, Arizona, USA, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw