進階搜尋


 
系統識別號 U0026-0812200913452037
論文名稱(中文) 模擬體外震波消脂術之震波能量與組織傷害評估
論文名稱(英文) Evaluation of Shock Wave Energy Attenuation and Tissue Damage in Emulated Fats
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 95
學期 2
出版年 96
研究生(中文) 劉得崙
研究生(英文) Der-Lun Liu
電子信箱 p4694148@mail.ncku.edu.tw
學號 p4694148
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 口試委員-馬亞尼
指導教授-梁勝明
口試委員-溫志湧
口試委員-張建成
口試委員-蒲永仁
中文關鍵字 震波  能量強度 
英文關鍵字 intensity  shock wave 
學科別分類
中文摘要 本研究嘗試將震波應用於破壞脂肪細胞上,震波聚焦時的空蝕效應可以破壞深層脂肪細胞而破壞,被破壞的脂肪細胞隨人體之新陳代謝消失後使得體重下降。在臨床實驗前,建立一組脂肪假體模型,其物理性質與真實脂肪組織相似,並且施以不同震波能量強度及不同震波次數於該脂肪假體上,而後觀察該脂肪假體所受之破壞程度、損傷範圍及楊氏係數之改變,另外使用壓力探針量測震波焦點之壓力值,經由示波器擷取實驗數據,將實驗數據輸入電腦,以積分程式計算在不同厚度時震波施打於凝膠假體所受之能量強度,並且比較其耗損率,以作為未來動物實驗和臨床上的參考依據。
凝膠假體組織在操作電壓9 kV(3.61 mJ/ mm2,電極間距0.5mm)下,假體組織因震波能量之施打,其楊氏模數的值隨施打次數從1000增加至5000次而改變,由5.63 % 改變增加到27.55 % ,此楊氏模數值的改變代表該組織因震波施打後有軟化的趨勢。由量測震波之能量強度得知,當在9 kV(0.734mJ/mm2,電極間距0.8mm)時,隨凝膠假體組織的厚度由1cm增加到5cm,所耗損的能量為 0.78% 增加到 2.22%。
英文摘要 This study is to try to evaluate the performance of shock-wave lipotripsy on gelatins that emulated animal fats as lithotripsy for kidney stones or orthotripsy for musculo-skeletal disorders. A gelatin was made of jelly powder and water, whose physical property of sound impedance is similar to a true adipose tissue of human being. An experiment was set up for studying the damage effect of different intensities and numbers of shock waves on the gelatin by observing the destruction degree and the change of Young’s modulus. The measured pressure profiles at the second focus by using a PCB pressure sensor are collected through an oscilloscope and are evaluated for losses in the energy flux intensity by an integrating program for different thicknesses of gelatin. These data may be used as a basis of reference for animal or clinical experiments.
It is found that at the operating voltage of 9kV (3.61 mJ/mm2, initial gap 0.5mm), the change in Young’s modulus of the treated gelatin after shock wave treatment is increased from 5.63% to 27.55% as the number of shock waves is increased from 1000 to 5000. The change in Young’s modulus denotes that the treated tissue has a tendency of softening. While the operation voltage is set at 9kV (0.734mJ/mm2, initial gap 0.8mm), the loss in energy flux intensity is increased from 0.78% to 2.22% as the thickness of gelatin is increased form 1cm to 5cm.
論文目次 目錄

Page
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
表目錄 viii
圗目錄 ix
符號說明 xii

第一章 緒論 1
§1-1 前言 1
§1-2 研究動機與目的 1
§1-3 文獻回顧 2

第二章 理論分析 6
§2-1 震波基本原理 6
§2-2 球震波之基本特性 7
§2-3 電水式震波產生器 9
§2-4 震波反射之基本型態 12
§2-5 空蝕現象 14
§2-6 氣泡運動方程式 17
§2-8-1 Rayleigh-Plesset 方程式 17
§2-8-2 二階線性微分運動方程式 20
§2-7 脂肪細胞分解後人體吸收之循環機制 25
§2-8 能量強度 26
§2-9 聲速的量測 27
§2-10 脈衝之上升時間、下降時間與寬度 29

第三章 實驗設備方法、與步驟 30
§3-1 實驗設備 30
§3-1-1 體外震波碎石機 31
§3-1-2 自動間距控制系統 33
§3-1-3 伺服控制箱 35
§3-1-4 CCD camera 36
§3-1-5 自動間距控制系統操作介面 37
§3-1-6 壓力量測系統 39
§3-1-7 資料擷取系統 40
§3-1-8 凝膠體楊氏模數測試平台 41
§3-2 實驗方法 42
§3-2-1 橢圓反射體之物理第二焦點尋找 42
§3-2-2 假體的製作 43
§3-3 實驗目的與步驟 46

第四章 結果與討論 51
§4-1 凝膠假體組織之楊氏模數變化 51
§4-2 凝膠假體組織之傷害範圍 58
§4-3 凝膠假體組織在震波第二焦點外之能量強度 64
§4-4 凝膠假體組織不同厚度能量強度之耗損 65

第五章 結論與建議 75
§5-1 結論 75
§5-2 未來工作與建議 78

參考文獻 80
附錄 計算能量強度積分程式 83
自述 84
參考文獻 [1] Petty, R. W. and Kantrowitz , A., “The Production and Stability of
Converging Shock Waves,” Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886, 1951.
[2] Bailitis, E., “Der Schallimpuls eines Flussigkeitsfunkens (The pressure pulse of a liquid spark),” Zeitschrift fur angewandte Physic einshchlieβ lch Nckleonik, Vol. 9, pp. 429-434, 1957.
[3] Hausler, E. and Kiefer, W., “Anregung von Srosswellen in Flussigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, pp. 36-42 , 1971.
[4] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, W., Forsssman, B., and Walther, W., “First Clinical Experience with Extracorporeally Induced Destruction of Kideny Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.
[5] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, W., and Liedl, B., “Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Urolithiasis,” Urology, Vol. 93, pp. 59-66, 1984.
[6] Grönig, H., “Shock Wave Focusing Phenomena,” Proc. of the 15 intl. Symp. on shock wave and Shock Tubes, Stanford University Press, pp. 43-56, 1985.
[7] Coleman, A. J., Saunder, J. E., Crum, L. A. and Dyson, M., “Acoustic Cavitation Generated by an Extracorporeal Shockwave Lithotripter,” Ultrasound in Medicine and Biology, Vol. 13, NO. 2, 1987a.
[8] Patrick, T., Finlayson, B., Robert, J., Gossip, H., Wallace, C. Walker, R., Walck S. and Nasr, M., “Measurement of Shock Wave Pressure Used for Lithotripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.
[9] Müller, M. “Experimental Investigations on Focusing of Weak Spherical Shock Wave in Water by Shallow Eillipsoidal Reflector,” Acustica, Vol. 64, pp. 85-93,1987.
[10] Chuong, C. J., Zhong, P., Preminger G. M., “A Comparison of Stone Damage Caused by Different Modes of Shock Wave Generation,“ Journal of Urology, Vol. 148, pp. 200-205, 1992.
[11] Campo A. F. , Allegretti E. R., Fillho J. A. F., Gordon C. B.,”Liposuction: Procedure for Focal Volume Reduction and Body Contour Remodeling,” World J. Surg. 22, 981-986, 1998.
[12] Rohrich R. J., Beran S. J., Kenkel J. M., Adams W. P., Jr., and DiSpaltro F., “Extending the Role of Liposuction in Body contouring with Ultrasound-Assisted Liposuction,” Plast. Reconstr. Surg., 1998, Apr;101(4):1090-1102
[13] Kodama T. and Tomita Y., “Cavitation Bubble Behavior and Bubble-Shock Wave Interaction near a Gelatin Surface as a Study of in Vivo Bubble Dynamics,“ Applied. Physics, B70, pp. 139-149, 2000.
[14] Mebdes F. H., “External Ultrasound-Assisted Lipoplasty from our
own Experience,” Aesth. Plast. Surg. 24:270-274, 2000.
[15] Park S., “Very Superficial Ultrasound-Assisted Lipoplasty for the Treatment of Axilliary Osmidrosis,” Aesth. Plast. Surg. 24:275–279, 2000.
[16] Sturtevant, B., “Shock Wave Physics of Lithotriptors,” in Smith’s
Textbook of Endourology, Quality Medical Publishing, Inc., pp.
529-552, 1996.
[17] Ben-Dor, G., Shock Wave Reflrctuon Phenomena, Spring-Verlag New York Inc., 1992.
[18] “The Role of Cavitation in Extrcoporeal Shock Wave Lithotripsy, “Dec.2000.http://pluto.apl.washington.esd/harlett2/artwww/acoustic/medical/litho.html
[19] Pye S. D. and Dineley J. A., “Characterization of Cavitational
Activity in Lithotripsy Fields Using a Robust Electromagnetic Probe,“ Ultrasound in Med. & Biol., Vol 25, No. 3, pp. 451-471, 1999.
[20] Brown, S., Ph. D., Director of Plastic Surgery Resarch, “What Happens to Fat Affer Treatment With the UltraShape Device.” UT Southwestern Medical Center, Dallas, USA
[21] 周傑鴻,“骨疾用之震波產生器之設計與性能評估,” 國立成功大學航空太空學系碩士論文, 中華民國九十三年六月.
[22] AIUM/NEMA. Safety standard for diagnostic ultrasound
equipment.AIUM/NEMA standard Publication UL1-1981. American Institute for Ultrasound in Medicine/National Electrical
Manufacturers Association, 1981.
[23] 李永平, “體外震波碎石機之震波聚焦對結石分解與組織傷害之探討,” 國立成功大學航空太空學系碩士論文,”中華民國九十一年六月.
[24] Leighton T. G., The Acoustic Bubble., Academic Press, London,
1994.
[25] 賴政緯, “骨疾用體外震波醫療機之系統整合,” 國立成功大學航空太空學系碩士論文,” 中華民國九十五年六月.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw