進階搜尋


 
系統識別號 U0026-0812200913450103
論文名稱(中文) 以磁控濺鍍法製備之氧化鎳薄膜應用於固態電致色變元件之研究
論文名稱(英文) Investigation of Nickel Oxide Films Prepared by Magnetron Sputtering for the Application of Solid State Electrochromic Devices
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 吳囿蓉
研究生(英文) You-rong Wu
學號 n5694418
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-李丁福
口試委員-王聖璋
口試委員-丁志明
口試委員-李玉郎
指導教授-黃肇瑞
中文關鍵字 固態電致色變元件  反應磁控濺鍍  氧化鉭  氧化鎳 
英文關鍵字 Tantalum oxide  Reactive magnetron sputtering  Nickel oxide  Solid state electrochromic device 
學科別分類
中文摘要 電致色變材料已被廣泛研究於有關調變太陽光輻射的應用,具有獨特電化學與光學性質之注入型非計量比氧化鎳薄膜,其亦被成功的應用於智慧型窗戶。但是,有關於鋰離子注入氧化鎳薄膜之過程,與其於全固態電致色變元件之應用尚未被完全瞭解。因此,於本篇論文中利用直流反應磁控濺鍍法,於不同氧氣氣氛(氧氣流量範圍為3~50sccm)中製備非計量比氧化鎳薄膜。並利用三電極系統探討氧化鎳薄膜於濃度0.1M過氯酸鋰-碳酸丙烯溶液中之電致色變性質。有關氧化鎳薄膜之光學性質、成分組成與微觀結構性質也分別利用紫外光-可見光光譜儀(UV-visible spectrometer)、X光光譜分析儀(XPS)、X光繞射分析儀(X-ray diffraction)與掃瞄式電子顯微鏡(SEM)分析。分析結果顯示,於不同氧氣流量條件下初鍍之薄膜皆形成同時具有Ni+2及Ni+3之非計量比NiOx薄膜。且隨著氧氣流量的增加造成氧化鎳中氧的間隙原子與薄膜中之Ni+3出現增多,使得氧化鎳薄膜的穿透率隨之下降。微結構分析中可看出於氧氣流5~50sccm沉積之氧化鎳薄膜皆是呈現有利於電致色變性質之(111)優選方向結構,並可發現四面體島狀結構之表面型態。Li離子與電子同時遷入薄膜過程中發現,過多或過少的氧氣流量都不利於氧化鎳薄膜之著、去色效率。因此於氧氣流量為5sccm時,薄膜在著色、去色前後變化具有最高的差異,去色穿透率為72.5%,著色穿透率為33.7%,穿透率變化達38.8%。

將擁有最佳電致色變性質之氧化鎳薄膜當作輔助變色層與主要變色層氧化鎢、電解質層氧化鉭結合做成一全固態電致色變元件。並研究此一固態電致色變元件之性質。研究結果發現,電位範圍為-4V及2.2V可使元件穿透率變化達52%,且所組成之元件比單層氧化鎢或氧化鎳薄膜之半元件有較廣之吸收波長範圍。美中不足的是,氧化鉭薄膜對於電子絕緣性不佳而使元件記憶性降低,因此,本實驗所製備之電致色變元件其記憶性尚需要進一步的改善。
英文摘要 Electrochromic materials are being studied for applications involving solar radiation modulation. Thin-film nonstoichiometric nickel oxide (NiOX) is an intercalation electrode with unique electrochemical and optical properties which can be successfully used for improved electrochromic windows. However, the intercalation process of lithium and the application of all solid state devices are not yet fully understood. In this paper, nonstoichiometric nickel oxide thin films were deposited by D.C. magnetron reactive sputtering in various O2 atmospheres (the flow rate range is 3~50sccm). The electrochromic properties of NiOX thin films were brought out using a three-electrode cell system with a 0.1M solution of lithium perchlorate in propylene carbonate. The optical properties, composition and microstructure of NiOX thin films with various O2 flow rate were be determined by UV-visible spectrometer, XPS, X-ray diffraction, and SEM. As the result, all of the films deposited under various O2 flow rate were nonstoichiometric nickel oxide and with Ni+2 and Ni+3. Due to the number of interstitial oxygen atom and Ni3+ increased, the films transmittance decreased with increasing O2 flow rate. The microstructure of the films deposited at 5~50sccm O2 flow rate had NiO (111) preferred orientation which was the most suitable direction for electrochromic properties. They can be found the surface morphology showed the presence of tetrahedral islands structure. At the double intercalation process between lithium ion and electron, the NiOX thin film exited an optimum value of O2 flow rate. When the O2 flow rate was 5sccm the NiOX thin film had a largest transmittance change about 38.8%, and the transmittance of bleach state and color state was 72.5% and 33.7%.

The NiOX thin film which had the best electrochromic properties was used as a counter electrochromic layer on the solid electrochromic device with electrochromic layer WO3-y and electrolyte Ta2O5. Then the solid electrochromic device was also studied about its electrochromic properties. As the result, the transmittance change of the device reached 52% when the applied voltage were -4V and 2.2V, and the device had a wider adsorption wavelength range than single layer half device of NiO or WO3. The only fly in the ointment was the poor electric insulation of Ta2O5 thin film resulted in reducing the device memory effect. Therefore, the device memory effect will need to improve further.
論文目次 總目錄

摘要 Ⅰ
英文摘要 Ⅲ
總目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅸ


第一章 緒論 1

1.1前言 1
1.2 研究目的 5

第二章 理論基礎 6

2.1 電致色變材料 6
2.2 電致色變元件 7
2.3 電致色變機制 14
2.3.1 氧化鎢 14
2.3.2 氧化鎳 15
2.4 氧化鎳的結構 16
2.5 電漿的產生 19
2.6 反應磁控濺鍍 21
2.7 射頻濺鍍 23
2.8 鍍層的成核 24
2.9 鍍層的微觀結構 24
第三章 實驗方法與步驟 29

3.1 實驗流程圖 29
3.2 實驗材料 31
3.3 基材前處理 31
3.4 實驗設備 31
3.5 濺鍍步驟與條件 32
3.6 鍍層的分析與測試 33
3.6.1 濺鍍速率之量測 33
3.6.2 成份和化學鍵結分析 33
3.6.3 縱深元素分析 35
3.6.4 X-Ray繞射分析 35
3.6.5 微觀結構之觀察 35
3.6.6 電化學反應分析 36
3.6.7 光學性質量測 37

第四章 結果與討論 40

4.1 氧氣流量對氧化膜薄膜性質的影響 40
4.1.1 反應濺鍍速率 40
4.1.2 成份分析 42
4.1.3 微觀組織 45
4.1.4光學性質 52
4.1.5電致色變性質 54
4.1.6變色之響應時間 67
4.2 電致色變元件之製作與性質分析 69
4.2.1 氧化鉭薄膜製備 69
4.2.2 元件之電致色變性質分析 76
4.2.3 元件記憶性分析 77

第五章 結論 83

參考文獻 85
表目錄

Table 2-1 Various chromic materials of transition metal oxide. 8
Table 2-2 Tungsten-oxide-based electrochromic device structure. 9

圖目錄

Fig. 1-1 The principles of four different applications of electrochromic devices. Arrows indicate incoming and outgoing electromagnetic radiation, the thickness of the arrow signifies radiation intensity. 3
Fig. 1-2 The periodic table of the elements, excluding the lanthanides and actinides. The shaded boxes refer to the transition metals whose oxides have well-documented cathodic and anodic electrochromism. 4
Fig. 2-1 Electrochromic device design, illustrating the movement of ions under an applied voltage. 12
Fig. 2-2 Schematic of (a) Transparent electrochromic device and (b) Reflecting electrochromic device in bleached and colored state. 13
Fig. 2-3 Schematic diagram of nickel oxide crystal structure. 17
Fig. 2-4 Diagrams of forming p-type nickel oxide. (a) Stoichiometric NiO (b)Non-stoichiometric NiOx was formed due to nickel vacancy and institutial oxygen atom in the film. 18
Fig. 2-5 Schematic illustration of R.F. glow discharge. 20
Fig. 2-6 Interaction of ions with target surface. 22
Fig. 2-7 Schematic depiction of the energetic particle bombardment effects on surfaces and growing films. 25
Fig. 2-8 Nucleation and formation of a thin films. 26
Fig. 2-9 The Thorton Zone model : schematic representation of the influence of the substrate temperature and argon working pressure of coatings deposited by sputtering. 28
Fig. 3-1 Flow chart for preparation of NiOx film. 29
Fig. 3-2 Flow chart for preparation of Ta2O5 and electrochromic device…..30
Fig. 3-3 Schematic diagram of the DC magnetron sputtering system used for films deposition. 34
Fig. 3-4 Schematic diagram of the electrochemical measurement system. 39
Fig. 4-1 Deposition rate of NiOx films prepared at various oxygen flow rate. 41
Fig. 4-2 The composition analysis of NiOx films deposited at various oxygen flow rates. 43
Fig. 4-3 (a)O1s and (b)Ni2p3/2 XPS spectra of as-deposited NiOx film. 44
Fig. 4-4 Grazing incident x-ray diffraction (GIXRD) patterns of NiOx films prepared at oxygen flow rates of 3, 5, 10, 20 and 50sccm. 47
Fig. 4-5 Lattice constant of NiOx films prepared at oxygen flow rates of 3, 5, 10, 20 and 50sccm. 48
Fig. 4-6 θ-2θ x-ray diffraction (XRD) patterns of NiOx films prepared at oxygen flow rates of 3, 5, 10, 20 and 50sccm. 49
Fig. 4-7 SEM morphology s of NiOx films prepared at various oxygen flow rates. 50
Fig. 4-8 AFM images showing the morphology and roughness of NiOx films prepared at various oxygen flow rates. 51
Fig. 4-9 Transmittance spectrum of as-deposited NiOx film prepared at various oxygen flows rates. 53
Fig. 4-10 Cyclic voltammograms of NiOx films deposited at various oxygen flow rates of (a) 3 (b) 5 (c) 10 (d) 20 (e) 50sccm. 56~58
Fig. 4-11 Cyclic voltammograms of 20th cycled NiOx films which were deposited at different oxygen flow rates. 59
Fig. 4-12 Transmittance spectra of NiOx films deposited at various oxygen flow rates of (a) 3 (b) 5 (c) 10 (d) 20 (e) 50sccm in the as-deposited, colored and bleached state after 20 cycles. 60
Fig. 4-13 The transmittance and its difference at 550nm of bleached and colored state NiOx film which were deposited at various oxygen flow rate. 62
Fig. 4-14 (a) Atomic distribution of NiOx film in bleached state and (b) Li/Ni concentration ratio of NiOx film in as-deposited, bleached and colored state were analyzed by AES. 63
Fig. 4-15 Optical density change of NiOx films deposited at different oxygen flow rates. 65
Fig. 4-16 The coloration efficiency of NiOx films prepared at different oxygen flow rates. 66
Fig. 4-17 Electrochromic response time as function of oxygen flow rate. 68
Fig. 4-18 XRD pattern of Ta2O5 film deposited by rf sputtering. 70
Fig. 4-19 (a) SEM morphology and (b) cross-section of Ta2O5 film deposited on NiOx by RF sputtering. 71
Fig. 4-20 Transmittance spectrum of Ta2O5 film deposited by RF sputtering. 73
Fig. 4-21 Cyclic voltammograms of Ta2O5/ NiOx and NiOx film in the liquid electrolyte LiClO4/PC at -1.5V~1.5V. The scan rate is 50mV/sec. 74
Fig. 4-22 Transmittance spectrum of Ta2O5/ NiOx and NiOx film during bleaching and coloring process. 75
Fig. 4-23 Top views of the solid electrochromic device in (a) as-fabricated, (b) colored, and (c) bleached state. 79
Fig. 4-24 Transmittance at 550nm of the solid electrochromic device under various potential versus coloring and bleaching time. 80
Fig. 4-25 Transmittance spectrum of the solid electrochromic device in (a) as-fabricated state, (b) colored state at -4V, and (c) bleached state at 2.2V. 81
Fig. 4-26 Memory effect of the solid electrochromic device which was as-applied -2.5V and -4V. 82
參考文獻 參考文獻

[1]焦小浣, 胡文旭, 陳玲, 光窗透明材料的實驗研究, 太陽能學報18, No. 4 (1997) 365-370.
[2]C. G. Granqvist, E. Avendano, A. Azens, "Electrochromic Coatings and Devices: Durvey of Some Recent Advances", Thin Solid Films 442 (2003) 201-211.
[3]C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D.Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, "Recent Advances in Electrochromics for Smart Windows Applicans" Solar Energy 63, No. 4 (1998) 199-216.
[4]D. N. Buckley, L. D. Burke, J. K. Mukahy, J. Chem. Soc., Faraday 72, No. 1 (1976) 1896.
[5]L. D. Burke, E. J. M. O’sakan, J. Electroanal. Chem. 93 (1978) 11.
[6]Y. A. Yang, Y. W. Cao, B. H. Loo, J. N. Yao, J. Phys. Chem. B 102 (1998) 9392.
[7]Z. S. Guan, J. N. Yao, Y. A. Yang, B. H. Loo, J. Electroanal. Chem. 443 (1998) 175.
[8]A. M. Andersson, W. Estrada and C. G. Granqvist,
"Characterization of electrochromic dc-sputtered nickel-oxide-based films", SPIE 1272 (1990) 96-110
[9]L. D. Burke ,T. A. M. Thomey, D. P. Whelan, J. Electroanal. Chem. 107 (1980) 201.
[10]T. Ohtasuka, M. Masuda and N. Sato, J. Electrochem. Soc. 134 (1987) 804.
[11]W. Estrada, A. M. Aderson, C. G. Granqvist,
"Electrochromic Nickel-oxide-based Coatings Made by Reactive Dc Magnetron Sputtering: Preparation and Optical properties", J. Appl. Phys. 64 (1988) 3678-3683.
[12]Y. Z. Xu, M. Q. Qiu, S. C. Qiu, J. Dai, G. J. Cao, H. H. He, J. Y. Wang, "Electrochromism of NiOxHy Films Grown by DC Sputtering", Sol. Energy Mater. Sol. Cells 45 (1997) 105-113.
[13]I. Bouessay, A. Rougier, J. M. Tarascon, J. Electrochem., "Electrochemically Inactive Nickel Oxide as Electrochromic Material", J. Electrochem. Soc. 151, No. 6 (2004) H145-H152.
[14]A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, " Sputter-deposited Nickel Oxide for Electrochromic Applications" Solid State Ionics 113–115 (1998) 449–456.
[15]I. Porqueras, E. Bertran1, "Electrochromic Behaviour of Nickel Oxide Thin Films Deposited by Thermal Evaporation" Thin Solid Films 398 –399 (2001) 41–44.
[16]P. K. Sharma, M. C. A. Fantini, A. Gorenstein, "Synthesis, Characterization and Electrochromic Properties of NiOxHy Thin Film Prepared by a Sol–gel Method" Solid State Ionics 113–115 (1998) 457–463.
[17]M. Gómez, A. Medina, W. Estrad, "Improved Electrochromic Films of NiOx and WOxPy Obtained by Spray Pyrolysis", Sol. Energy Mater. Sol. Cells 64 (2000) 297-309.
[18]S. A. Mahmoud, S. A. Aly, M. Abdel-Rahman, K. Abdel-Hady, "Electrochromic characterisation of electrochemically deposited nickel oxide films", Physica B 293 (2000) 125-131.
[19]S. K. Deb, "Opportunities and Challenges of Electrochromic Phenomena in Transition Metal Oxides", Sol. Energy Mater. Sol. Cells 25 (1992) 327-338.
[20]何國川, 電化學與無窗時代, 化工 37, No. 3 (1990) 32-42.
[21]J. R. Platt, "Electrochromism, A Possible Change of Color Producible in Dyes by An Electric Field", J. Chem. Phys. 34 (1961) 862-863.
[22]楊明長, 電致色變系統簡介, 化工 40, No. 2 (1993) 64-67.
[23]謝育忠, 電漿濺鍍電致色變氧化鎳薄膜特性研究與節能評估, 中原大學化學工程所, 碩士論文, 民國九十一年.
[24]S. K. Deb, "A Novel Electrophotographic System", Appl. Optics, Suppl. 3 (1969) 192.
[25]C. M. Lampert, "Smart Switchable Glazing for Solar Energy and Daylight Control", Solar Energy Materials and Solar Cells 52 (1998)
207-221.
[26]A. Avendaño, A. Azens, G. A. Niklasson, C. G. Granqvist, "Sputter Deposited Electrochromic Films and Devices Based on These: Progress on Nickel-Oxide-Based Films", Materials Science and Engineering B
138 (2007) 112–117.
[27]M. S. Monk, R. J. Mortimer, D. R. Rosseinsky,"Electrochromism: Fundaments and Applications", VCH, Weinheim, (1995) 45-46.
[28]C. Corbella, M. Vives, A. Pinyol, I. Porqueras, C. Person, E. Bertran, "Influence of The Porosity of RF Sputtered Ta2O5 Thin Films on Their Optical Properties for Electrochromic Applications ", Solid State Ionics
165 (2003) 15–22.
[29]M. Kitao, H. Akram, H. Machida and K. Urable, "Ta2O5 Electrolyte Films and Solid-State EC Cells", SPIE 1728 (1992) 165-172.
[30]林昌寬, 鎳氧化物之電解析鍍及其電調色性質, 成功大學, 化學工程研究所, 碩士論文, 民國八十二年.
[31]李淑端, 有機固態電解質電致色變元件之製作, 逢甲大學材料與製造工程研究所, 碩士論文, 民國九十二年.
[32]B. W. Faughnan, R. S. Crandall, P. M. Heyman,
"Electrochromism in WO3 Amorphous Films", RCA Review 36 (1975) 177-197.
[33]S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, S. K. Deb, "Electrochromic coloration efficiency of a-WO3 – y thin films as a function of oxygen deficiency", Applied Physics Letter 75, No. 13 (1999) 1541-1543.
[34]S. R. Jiang, P. X. Yan, B. X. Feng, X. M. Cai, "The response of a NiOx Thin Film to A Step Potential and Its Electrochromic Mechanism", Materials Chemistry and Physics 77 (2002) 384–389.
[35]S. Passerini and B. Scrosati, "Characterization of
Nonstoichiometric Nickel Oxide Thin-Film Electrodes", J. Electrochem. Soc. 141, No. 4 (1994) 889-895.
[36]WebElementsTM, the periodic table on the WWW, URL:
http://www.webelements.com/, 1993-2001 Mark Winter, The University of Sheffield and WebElements Ltd, UK.
[37]D. Adler, J. Feinleib, "Band Structure of Magnetic Semiconductors", Phys. Rev. B 2 (1970) 3112.
[38]G. Austin, N. F. Mott, "Polarons in Crystalline and Non-crystalline Materials", Adv. In Phys 18 , No. 71 (1969) 80.
[39]K. S. Ahn, Y. C. Nah, J. H. Yum, Y. E. Sung, "The Effect of Ar/O2 Ratio on Electrochromic Response Time of Ni Oxides Grown Using an RF Sputtering System ", Jpn. J. Appl. Phys. 41 (2002) 212-215.
[40]U. Mazur, A. C. Clearly, J. Phys. Chem 94, (1990) 189.
[41]S. M. Rossnagel, "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, USA, (1989).
[42]B. Chapman, "Glow discharge process", John Wiley and Sons, New York, (1980).
[43]J. A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of the Thick Sputtered Coating", J. Vac. Sci. Technil. 11, No. 4 (1974) 666-670.
[44]P. B. Barna, and M. Adamik, "Fundamental Structure Forming Phenomena of Polycrystalline Films and The Structure Zone Models", Thin Solid Films 317 (1998) 27-33.
[45]W. H. Class, 楊錦章 譯, "基礎濺鍍電流", 電子發展月刊 68,(1983) 13-40.
[46]R. B. Shalvoy, P. J. Reucroft, B. H. Davis, J. Catal. 56 (1979) 336.
[47]K.S. Kim, N. Winograd, J. Catal. 35 (1974) 66.
[48]F. F. Ferreira, M. H. Tabacniks, M. C. A. Fantini, I. C. Faria, A. Gorenstein, "Electrochromic Nickel Oxide Thin Films Deposited Under Different Sputtering Conditions ", Solid State Ionics 86-88 (1996) 971-976.
[49]B. Warota, E. Snoecka, P. Baulesa, J. C. Ousseta, M. J. Casanovea, S. Dubourgb, J. F. Bobo, "Formation of Tetrahedral Islands in Epitaxial NiO Layers Deposited on MgO (1 1 1)", Journal of Crystal Growth 234
(2002) 704–710.
[50]R. S. Conell, D. A. Corrigan, B. R. Powell, Solar Energy Mater. Solar Cells 25 (1992) 301.
[51]F. Decker, S. Passerini, R. Pileggi and B. Scrosati, "The Electrochromic Process In Non-stoichiometric Nickei Oxide Thin Film Electrodes",
Electrochimica Acta 37, No. 6 (1992) 1033-1038.
[52]王武章, 反應磁控濺鍍氧化鎢薄膜之電致色變性質研究, 成功大學, 材料科學及工程學系, 碩士論文, 民國九十四年.
[53]G. Maccari, P. Macrelli, Polato, E. Poli, "Design, Production And Characterization of An All SolidState Electrochromic Medium Size Ddevice", Solar Energy 63, No. 4 (1998) 217–229.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw