進階搜尋


 
系統識別號 U0026-0812200913442338
論文名稱(中文) 口腔顎面多面向手術計畫基礎建構與臨床應用
論文名稱(英文) Development of Multi-aspect Infrastructure for Oral and Maxillofacial Surgical Planning and Clinical Applications
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 吳東錦
研究生(英文) Tung-Ching Wu
學號 n1694446
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 口試委員-曾清秀
口試委員-鍾景宏
口試委員-王東堯
指導教授-方晶晶
中文關鍵字 正顎手術  對稱  電腦斷層 
英文關鍵字 CT  Orthognathic surgery  Symmetry 
學科別分類
中文摘要 正顎手術及人工植牙手術都為複雜且困難度高的臨床技術,傳統正顎手術常難以兼顧咬合功能與顏顎面之對稱性,又植牙手術亦需兼顧齒列咬合關係與支撐力,因此規劃出好的手術計畫與精確實現該計畫是不容易的。本文針對這些需求以電腦輔助技術協助醫師得到最佳的術前計畫與術後結果。
本研究建立多種手術輔助技術協助診斷口腔顎面方面的疾病,提供多方面應用性手術計畫產出術中導引輔具,本研究更提出正顎手術的目標-對稱性的顏顱骨之最佳對稱面法則以應用於臨床手術計畫上。為了建立斷層影像與實體模型的座標關係,本文開發模型空間簡易註冊技術。更增設碰撞檢測功能,模擬下顎運動診斷冠狀突是否卡阻。規劃出兼顧術後功能與對稱顏顎骨的模型手術,用以評估手術計畫追蹤最佳目標。更利用現有技術建立電腦輔助人工植牙技術,建立實體網格輸出功能,作為轉換電腦輔助口腔顎面手術系統到有限元素分析軟體的橋樑。
英文摘要 Orthognathic surgery and implant surgery are complex and difficult in clinical surgery. It is important for surgeons to consider both dental occlusion and facial symmetry by traditional techniques. As well as, dental implant is needed to consider denture occlusion and its supported pressure. Therefore, to develop a well organized surgical planning and truly fulfill the target is not an easy task. Base on these requirements, we used computer aided techniques to assist requirement in planning the pre-surgical workflow and reaching the best outcomes.
In this research, we developed several aspects of planning techniques for diagnosis, provided multiple applicable navigation tools in clinical surgery. A quantification rule for evaluate and locate the best symmetry plane of facial bone is presented as an ultimate solution of jaw correction surgery. In order to locate the correlation ships between computer tomography imaging and the dental stone, we developed a simple registration method. Methods of collision detection is need to detect the situation of impegement of coronid process and zygoma during mandibular movement animation. Model surgery skills is developed that balancing either considerations of both dental occlusion and facial symmetry. Moreover, based on the cornerstones we ever built, dental implant planning can be done manually. Solid meshes transferred from marching cubes builds a connection bridge between our solution and the finite element software.
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
表 目 錄 IX
圖 目 錄 IX
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 本文架構 3
第二章 文獻回顧 4
2.1 手術計劃系統 4
2.1.1 基本架構與流程 5
2.1.2 現有之相關軟體 6
2.2 三維顯影技術 8
2.2.1 體積彩現 9
2.2.2 表面彩現 10
2.3 碰撞檢測與實體網格 11
第三章 研究方法與驗證 13
3.1 手術計劃基礎建構 13
3.1.1 模型空間註冊 13
3.1.2 網格模型與遮罩轉換 14
3.1.3 標記物 17
3.2 最佳對稱面 19
3.3 最佳對稱面驗證 24
3.3.1 完全對稱之網格模型驗證 24
3.3.2 全對稱之實體模型驗證 28
3.4 改良之對稱性判準法則 29
3.5 對稱穩定性驗證 32
3.6 自動化校正歪斜電腦斷層影像 33
3.7 對稱分析流程 34
3.8 碰撞檢測 38
3.8.1 OBB-Tree檢測法 39
3.8.2 網格外包球 44
3.9 模型手術計劃 44
3.9.1 立體視覺追蹤 47
3.9.2 虛擬與實體模型註冊 50
3.9.3 以BSP檢驗計劃成效 53
3.9.4 與傳統二維測顱影像比對 54
3.10 人工植牙規劃 55
3.10.1 植體定位 55
3.10.2 輔助鑽孔定位板製作 57
3.11 實體網格 58
3.11.1 六面體網格與其變形 58
3.11.2 以行進方塊法產生六面體網格 59
第四章 病例實作結果與討論 62
4.1 對稱分析 62
4.2 碰撞檢測應用 64
4.3 模型手術應用 68
4.3.1 下顎正顎手術 68
4.3.2 上下顎正顎手術 70
4.4 植牙應用 72
4.5 討論 74
第五章 結論與未來展望 76
5.1 結論與貢獻 76
5.2未來展望 77
參考文獻 80
自 述 87
參考文獻 1. 林子源,“實體模型與電腦輔助技術於口腔顎面術前計劃之應用”,國立成功大學機械工程學系研究所碩士論文,2000。
2. 李俊毅,“顎面手術輔駐空間導引系統之設計與實作”,國立成功大學機械工程學系研究所碩士論文,2002。
3. 郭泰宏,“醫療影像軟體開發-基礎介面與三維實體模型開發”,國立成功大學機械工程學系研究所碩士論文,2002。
4. 鄭元愷, “醫療影像軟體開發-三維醫療影像物間之擷取與處理”,國立成功大學機械工程學系研究所碩士論文,2003。
5. 吳東錦,“對稱性判準法則應用—自動化顏顎區對稱面之臨床應用與評估”,行政院國家科學委員會大專生參與專題報告,2004。
6. 方晶晶,王東堯,吳東錦,“可量化之對稱性判準法則”,中華民國專利申請字號094136130,2005。
7. 游朝凱,“顏顎面手術計畫基礎建構之自動缺損重建研究”,國立成功大學機械工程學系研究所碩士論文,2005。
8. Hassfeld, S. and Mühling, J., 2001,“Computer Assisted Oral and Maxillofacial Surgery - A Review and an Assessment of Technology,” Int. J. Oral Maxillofac. Surg. 30: 2-13, 2001.
9. Brief, J., Hassfeld, S., Sonnenfeld, U., Verstrken, K., Van Claynembreugel, J., Martens, K., Marchal, G., Van Steenberghe, D., and Suetens, P., “An Image-guided Planning System for Endosseous Oral Implants,” IEEE Trans Med Imaging, Vol. 16, pp. 842-852, 1998.
10. Yasuda, T., Hashimoto, Y., Yokoi, S., and Toriwaki., J., “Computer system for Craniofacial Surgical Planning Based on CT Images, ” IEEE Trans. Medical Imaging, Vol. 9, No. 3, pp. 270-280, Sept. 1990.
11. Jonas Chapuis, Alexander Schamm, Ion Pappas, Wock Hallermann, Katja, Schwenzer-Zammerer, Frank Langlotz, and Marco Caversaccio, “A New System for Computer-Aided Preoperative Planning and Intraoperative Navigation During Corrective Jaw Surgery” IEEE Transactions on Information Technology In Biomedicine, Vol. 11, No. 3, 2007.
12. Voss, G., Hahn J.K., Muller, W., and Lindeman, R., “Virtual cutting of anatomical structures,” Studies in Health Technology Informatics, 62:381-3, 1999.
13. Neumann, P., Siebert D., Faulkner, G., Krauss, M., Schulz, A., Lwowsky, C., and Tolxdorff, T., “Virtual 3D cutting for bone segment extraction in maxillofacial surgery planning,” Studies in Health Technology Informatics, 62: 235-41, 1999.
14. Teschner, M., Girod, S., and Girod, B., “3-D simulation of craniofacial surgical procedures,” Studies in Health Technology Informatics, 81: 502-8, 2001.
15. Zhao, L., Patel, P.K., Widera, G.E.O., Han, H., and Harris, G.F., “Medical imaging genesis for finite element-based mandibular surgical planning in the pediatric subject,” Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE Volume 3, 25-28, pp. 2509 – 2512, Oct. 2001.
16. Keeve, E., Girod, S., Kikinis, R., and Girod, B., “Deformable Modeling of Facial Tissue for Craniofacial Surgery Simulation,” Computer Aided Surgery, John Wiley & Sons Inc., New York, invited paper, Vol. 3, No. 5, pp. 228-238, 1998.
17. Gao, J., Zhou, M., Wang, H., and Zhang, C., “Three dimensional surface warping for plastic surgery planning,” 2001 IEEE International Conference on Systems, Man, and Cybernetics, Volume 3, pp. 2016 – 2021, Oct. 2001.
18. http://www.amiravis.com/.
19. http://www.slicer.org/.
20. Gering, D., Nabavi, A., Kikinis, R., Hata, N., Odonnell, L., Eric, W., Grimson, L., Jolesz, F., Black, P., and WellsIII, W., “An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and an Open MR,” Journal of Magnetic Resonance Imaging, Vol 13, pp. 967-975, June, 2001.
21. Nain, D., Haker, S., Kikinis, R., and Grimson, E., “An Interactive Virtual Endoscopy Tool,” Proceedings of 2001 IMIVA and workshop of MICCAI.
22. Pohl, K.M., Bouix, S., Kikinis, R., and Grimson, W.E.L., “Anatomical Guided Segmentation With Non-Stationary Tissue Class Distributions in an Expectation-Maximization Framework,” IEEE International Symposium on Biomedical Imaging, pp. 81-84, April 2004.
23. http://www.mipg.upenn.edu/.
24. http://www.ablesw.com/3d-doctor/.
25. http://www.materialise.com/.
26. Watt, A., 3D Computer Graphic 3rd ed., Addison-Wesley, 2000.
27. Drebin, R. A., Carpenter, L., and Hanrahan, P., “Volume Rendering,” Computer Graphics, Vol. 22, No. 4, August 1988.
28. Knittel, G., “The ULTRAVIS System,” Proceedings of IEEE Symposium on Volume Visualization, Salt Lake City, October 2000.
29. Cabral, B., Cam, N., and Foran, J., “Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware,” Proceedings of IEEE Symposium on Volume Visualization, pp. 91-98, Washington DC, October 1994.
30. Garcia, A., and Shen, H.W., “An Interleaved Parallel Volume Renderer with PC-clusters,” Eurographics Workshop on Parallel Graphics and Visualization, pp. 51-59, 2002.
31. Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., and Seiler, L., “The VolumePro Real-Time Ray-Casting System,” Computer Graphics (ACM SIGGRAPH), pp. 251-260, 1999.
32. Shareef, N., and Yagel, R., “Rapid previewing via volume-based solid modeling,” Proceedings of the third ACM symposium on Solid modeling and applications, pp. 281 – 291, 1995.
33. Klaus Engel, Markus Hadwiger, Joe M. Kniss, Aaron E. Lefohn, Christof Rezk Salama, and Daniel Weiskopf, “Real-Time Volume Graphics”, Course Notes 28, ACM SIGGRAPH, 2004.
34. http://www.ati.com/developer/sdk/RadeonSDK/Html/Tutorials/Radeon3DTexturing.html.
35. Lacroute, P. and Levoy, M., “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation,” Proc. Of SIGGRAPH '94, Orlando, Florida, pp. 451-458, July 1994.
36. Treece, G.M., Prager, R.W., Gee, A.H., and Berman, L., “Surface Interpolation from Sparse Cross Sections Using Region Correspondence,” IEEE Transactions on Medical Imaging, Vol. 19, Issue 11, pp. 1106-1114, Nov. 2000.
37. Barequet, G., Goodrich M.T., Levi-Steiner, A., and Steiner, D., “Straight-skeleton Based Contour Interpolation,” SODA 2003, pp. 119-127, 2002.
38. Lorensen, W.E. and Cline, H.E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, Proc. of SIGGRAPH’87, Vol. 21, pp. 163-169, 1987.
39. Neilson, G.M. and Hamann, B., “The Asymptotic Decider Resolving the Ambiguity in Marching Cubes”, Proc. IEEE Visualization 1991, pp. 83-91, Oct. 1991.
40. Lin, C.F., Yang, D.L., and Chung, Y.C., “A Marching Voxels Method for Surface Rendering of Volume Data,” International Proceedings on Computer Graphics, pp. 306 - 313, July 2001.
41. Shekhar, R., Fayyad, E., Yagel, R., and Cornhill, J.F., “Octree-based Decimation of Marching Cubes Surfaces,” Proceedings on Visualization, pp. 335 - 342, Nov. 1996.
42. Kaneko, T. and Yamamoto, Y., “Volume-Preserving Surface Reconstruction from Volume Data,” Proceedings of IEEE International Conference on Image Processing, Vol. 1, pp. 145-148, Oct. 1997.
43. Hilton, A., Stoddart, A.J., Illingworth, J., and Windeatt, T., “Marching Triangles: Range Image Fusion for Complex Object Modeling,” Proceedings of IEEE International Conference on Image Processing, pp. 381-384, Vol. 2, Sept. 1996.
44. J.J. Fang, D.E.R. Clark, and J.E.L. Simmons, June, “Collision Detection Methodologies for Rigid Body Assembly in a Virtual Environment,” Journal of Virtual Reality Society, Vol. 1, No. 1, pp. 41-48, 1995.
45. J.J. Fang, D.E.R. Clark and J.E.L. Simmons, December, "An Accurate Collision Detection Method for Virtual Assembly and Locking," Proceedings of Framework for Immersive Virtual Environments - FIVE'95, pp. 151-162, London, 1995.
46. S. Gottschalk, M.C. Lin, and D. Manocha, “OBBTree: A Hierarchical Structure for Rapid Interference detection”, Proc. of SIGGRAPH ‘96, pp. 171-180, 1996.
47. G. van den Bergen. “Efficient Collision Detection of Complex Deformable Models using AABB Trees.” Journal of Graphics Tools, Vol. 2, pp.1-13, 1997.
48. O’Sullivan, and C. Dingliana, J.,”Real-Time Collision Detection and Response Using Sphere-Trees”, Image Synthesis Group, Trinity College Dublin, 1999.
49. Jean-Christoph Lomvardo, marie-Paule Cani and Fabrice Neyret, ”Real-time Collision Detection for Virtual Surgery”, Proceedings of IEEE Computer Animation, 1999.
50. Clemens Wagner, Markus A. Schill, and Reinhard Männer, “Collision Detection and Tissue Modeling in a VR-Simulator for Eye Surgery”, 8th Eurographics Workshop on Virtual Environments, 2002.
51. J. N. Reddy, “An Introduction to The Finite Element Method”, McGraw-Hill, 2006.
52. http://www.ansys.com/.
53. http://www.hks.com/.
54. Yongjie Zhang, Chandrajit, Bajaj, and Bong­Soo Sohn, “Adaptive and Quality 3D Meshing from Imaging Data”, Proc. of the Eighth ACM Symposium on Solid modeling and applications, 2003.
55. Chandrajit L. Bajaj, and Lalit C. Karlapalem, “Volume Subdivision based Hexahedral Finite Element Meshing of domains with interior 2-manifold boundaries”, Proc. of AFRIGRAPH, 2006 .
56. Vera B. Anand, “Computer Graphics and Geometric Modeling for Engineers”, John Wiley & Sons, Inc, 1993.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw