進階搜尋


 
系統識別號 U0026-0812200913440201
論文名稱(中文) 含矽之幾丁聚醣和聚乙烯酸之聚電解質複合物用於甲醇燃料電池質子交換膜之探討
論文名稱(英文) Study on Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) Embedded with Silica as Proton Exchange Membrane for DMFC
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 林睿毅
研究生(英文) Jui-Yi Lin
電子信箱 n3694148@mail.ncku.edu.tw
學號 n3694148
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-凌漢辰
口試委員-許貫中
口試委員-江建利
中文關鍵字 幾丁聚醣  聚電解質複合膜  溶膠凝膠法  滲透蒸發 
英文關鍵字 sol-gel  chitosan  pervaporation  polyelectrolyte complexes membrane 
學科別分類
中文摘要 本文製備幾丁聚醣及聚乙烯酸摻混形成之聚電解質複合膜,並加入在酸性環境下,溶膠-凝膠法反應所得到不同量的二氧化矽,形成有機-無機混成薄膜。所製備的薄膜藉由傅立葉紅外線光譜儀、X光繞射儀、掃描式電子顯微鏡及能量分散光譜儀鑑定其性質。 其熱穩定性及熱劣解溫度則以熱重分析儀分析紀錄,並探討在不同的聚乙烯酸、二氧化矽含量及甲醇溶液組成下的薄膜膨潤特性。另外,薄膜在質子導電度以及滲透蒸發上(包含分離因子及滲透量)的表現,一些的實驗變因,例如聚乙烯酸及二氧化矽含量、進料中甲醇濃度、操作溫度以及加入不同溶膠-凝膠反應時間所形成的二氧化矽 也在本文探討的範圍。
薄膜的膨潤程度會因為加入比較多的聚乙烯酸含量,及適量的二氧化矽而減少,同時也增加了滲透蒸發的性質。在含35 wt% 的聚乙烯酸及二氧化矽5 wt%的情況下,薄膜的質子導電度和分離因子都會得到此一系列的最高值。分離因子會隨著甲醇進料的濃度增加而增加,此一趨勢和文獻中Nafion® 薄膜相反。在溫度變因上,質子導電度隨著溫度升高而增加,但滲透蒸發的分離因子顯示出不完全一樣的趨勢。另一方面,文獻中提到,隨著溶膠-凝膠法反應時間的增加,所形成二氧化矽網路的尺寸也會隨著變大。研究也探討了其在質子導電度及滲透蒸發上的影響。
在聚電解質複合膜的製程中,添加適量且經由適當的溶膠-凝膠法反應時間的二氧化矽可同時增加質子導電度及提升甲醇的分離效果。
英文摘要 Polyelectrolyte complexes (PECs) membranes composed of chitosan and poly(acrylic acid) (PAA) were prepared in this study. The membranes were embedded with various amounts of silica derived from sol-gel reactions under acidic condition. The membranes were characterized by Fourier transform-infrared specrometer (FT-IR), X-ray diffractometer (XRD), scanning electronic microscopy (SEM) and energy dispersive X-ray spectrometer (EDX). In addition, thermal properties of PECs embedded with different amout of silica were investigated by thermal gravimetric ananlysis (TGA). The swelling behaviors of PECs with different PAA ratios , silica contents and methanol compositions were also studied. Furthermore, proton conductivity and pervaporation performances including separation factors and permeabilities were investigated with various PAA ratios, silica contents, methanol feed compositions, temperatures, and sol-gel reaction times.
It is found that an increase of PAA ratio in PECs membranes decreased the swelling degree and improved the pervaporation performance. With 5 wt% of silica content, both separation factor and proton conductivity reached their maximum for PECs membrane contained 35 wt% PAA. Separation factors increased with increasing methanol feed compositions. Although the proton conductivities increased with increasing operation temperatures, the separation factors did not follow the same trend. It is assumed that larger networks in size were formed by increasing sol-gel reaction time. The effects of sol-gel reaction time were investigated by both pervaporation and impedance analysis.
To sum up, with proper amount and sol-gel reaction time of silica, membrane performance could be increased both in methanol separation and proton conductivity.
論文目次 Abstract (Chinese) I
Abstract (English) III
Acknowledgements V
Table of Contents VI
List of Tables X
List of Figures XI
Chapter I Overview 1
1.1 Preface 1
1.2 Objective 2
Chapter II Introduction 4
2.1 Fuel Cells 4
2.2 Direct Methanol Fuel Cell 6
2.3 Literature Review 8
2.4 Proton Exchange Membranes 8
2.5 Pervaporation 12
2.6 Chitosan and its Application in Proton Exchange Membrane 14
Chapter III Experiments 20
3.1 Materials 20
3.2 Instrumentations 21
3.3 Membranes Preparation 22
3.3.1 Sol-gel Chemistry 22
3.3.2 Membranes Preparation 26
3.4 Pervaporation 29
3.4.1 Experimental Procedures 29
3.4.2 Calculations 32
3.5 AC Impedance Analysis 33
3.5.1 Introduction 33
3.5.2 Theory 33
3.5.3 Equivalent Circuit Elements 37
3.5.4 AC-Impedance Plots 39
3.5.5 Proton Conductivity 40
3.6 Swelling behavior 41
3.7 Analyzing Instruments 41
3.7.1 Fourier Transform Infrared Spectrometer, FT-IR 41
3.7.2 Thermal Gravimetric Analysis, TGA 41
3.7.3 Scanning Electronic Microscopy, SEM 42
3.7.4 Energy Dispersive X-ray Spectrometer, EDX 42
3.7.5 X-ray Diffraction, XRD 42
Chapter IV Results and Discussion 43
4.1 Characteristics of Membranes 43
4.1.1 Thermal Gravimetric Analysis, TGA 43
4.1.2 X-Ray Diffraction,XRD 44
4.1.3 Fourier Transform Infrared Spectroscopy,
FT-IR 45
4.1.4 Scanning Electronic Microscopy, SEM 46
4.1.5 Energy Disperse X-ray Spectrum, EDX 46
4.2 Swelling Behavior 47
4.3 Pervaporation 49
4.3.1 Effect of PAA Contents 49
4.3.2 Effect of Silica Contents 49
4.3.3 Effect of Feed Compositions 51
4.3.4 Effect of Temperatures 51
4.3.5 Effect of Sol-Gel Reaction Time 52
4.3.6 Long term Stability 53
4.4 Proton conductivity 54
4.4.1 Effect of PAA Contents 54
4.4.2 Effect of Silica Contents 55
4.4.3 Effect of Temperatures 56
4.4.4 Effect of Sol-Gel Reaction Time 57
Chapter V Conclusions 80
References 82
Appendix 92
參考文獻 1.胡玉洁,“天然高分子材料改性與應用”,化學工業出版社,北京,2003年7月
2.楊智仲,”Synthesis of proton exchange membranes for a direct methanol fuel cell: sulfonation and electrical conductivity of poly(vinyl alcohol) membranes”,義守大學生物技術與化學工程研究所碩士論文,民94年
3.Ageev, E. P.; Kotova, S. L.; Skorikova, E. E.; Zezin, A. B., “Pervaporation Membranes Based on Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid)” Polym. Sci. Ser. A, 38, 202 (1996)
4.Agmon, N.,“The Grotthuss mechanism”Chemical Physics Letters, 244, 456 (1995)
5.Amarilla, J. M.; Rojas, R. M.; Rojo, J. M.; Cubillo, M. J.; Linares, A.; Acosta, J. L.,“Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites” Solid State Ionics, 127, 133 (2000)
6.Bae, B. C.; Ha, H. Y.; Kim, D.,“Preparation and characterization of nafion/poly(1-vinylimidazole) composite membrane for direct methanol fuel cell application”J. Electrochem. Soc., 152(7), A1366 (2005)
7.Bard A. J., Faulkner L. R.,“Electrochemical Method Fundamentals and Application” 2nd Ed., John Wiley & Sons Inc., NewYork (2001)
8.Brinker, C. J.,“Hydrolysis and Condensation of Silicates: Effect on Structure”,J. Non-Cryst. Solids 100,31 (1988)
9.Brinker, C. J. and Scherer, G. W.,“Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”,Academic Press, Inc., New York (1990)
10.Cárdenas G.; Munoz C.; Carbacho H.,“Thermal properties and TGA-FTIR studies of polyacrylic and polymethacrylic acid doped with metal clusters” Eur. Polymer J. 36, 1091 (2000)
11.Carrette, L.; Friedrich, K. A.; Stimming, U., “Fuel Cells-Fundamental and Applications” Fuel Cells, 1, 5 (2001)
12.Chavasit, V.; Kienzle-Sterzer, C.; Torres, J. A., “Formation and characterization of an insoluble polyelectrolyte complex: Chitosan polyacrylic acid” Polymer Bulletin, 19, 223 (1988)
13.Cui, Z. M.; Liu, C. P.; Lu, T. H.; Xing, W., “Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton conducting membranes for direct methanol fuel cells” J. Power Sources, 167, 94 (2007)
14.Elabd, Y.A.; Napadensky, E., “Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers” Polymer, 45, 3037 (2004)
15.Finsterwalder, F. and Hambitzer, G., “Proton conductive thin films prepared by plasma polymerization” J. Membr. Sci., 185, 105 (2001)
16.Fouquet, N.; Doulet C., Nouillant, C.; Dauphin-Tanguy G.; Ould-Bouamama B., “Model based PEM fuel cell state-of-health monitoring via ac impedance measurements” J. Power Sources, 159, 905 (2006)
17.Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y., “ Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid” J. Membr. Sci., 185, 59 (2001)
18.Gómez-Romero, P.; Asensio, J. A.; Borrós, S., “Hybrid proton conduct¬ing membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)-(ABPBI-H3PMo12-O40)” Electrochimica Acta, 50, 4715 (2005)
19.Gruber, D.; Ponath, N.; Müller, J., “Plasma-Polymerized Proton- Con¬ducting Membranes for Reducing Methanol Permeation in DMFCs”ASME, 2, 186 (2005)
20.Hasiotis, C.; Deimede, V.; Kontoyannis, C.; “New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole” Electrochimica Acta, 46, 2401 (2001)
21.Heinzel, A. and Barragan, V. M., “A review of the state-of-art of the methanol crossover in direct methanol fuel cells” J. Power. Sources., 84, 70 (1999)
22.Honma, I.; Hirakawa, S.; Yamada, K.; Bae, J. M., “Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes” Solid State Ionics, 118, 29 (1999a)
23.Honma, I.; Nomura, S.; Nakajima, H., “Protonic conducting organic/ inorganic nanocomposites for polymer electrolyte membrane” J. Membr. Sci., 185, 83 (2001)
24.Honma, I.; Takeda, Y.; Bae, J. M., “Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules” Solid State Ionics, 120, 255 (1999b)
25.Hu, C. G.; Guo, R. L.; Li, B.; Ma, X. C., Wu H., Jiang Z. G., “Development of novel mordenite-filled chitosan-poly(acrylic acid) polyelectrolyte complex membranes for pervaporation dehydration of ethylene glycol aqueous solution” J. Membr. Sci., 293, 142 (2007)
26.Huang, R. Y. M., “Pervaporation Membrane Separation Process”, Elsevier, New York (1991)
27.Iler, R. K., “The Chemistry of Silica” Wiley, New York (1979)
28.Il’ina, A. V. and Varlamov, V. P., “Chitosan-Based Polyelectrolyte Complexes: A Review” Appl. Biochem. and Microbio., 41(1), 5 (2005)
29.Jegal, J. and Lee, K. H., “Chitosan membranes crosslinked with sulfosuccinic acid for the pervaporation separation of water/alcohol mixtures” J. Appl. Polym. Sci., 71, 671 (1999)
30.Jörissen, L.; Gogel, V.; Kerres, J.; Carche, J., “New membranes for direct methanol fuel cells” J. Power Sources, 105, 267 (2002)
31.Jung, B.; Kim, B.; Yang, J. M., “Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell”J. Membr. Sci., 245, 61 (2004)
32.Kanti, P.; Srigowri, K.; Madhuri, J.; Smitha, B.; Sridhar, S., “Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation” Separation Purification Technology, 40, 259 (2004)
33.Kim, D. S.; Liu, B.; Guiver, M. D., “Influence of silica content in SPAEEKK hybrid membranes on properties of fuel cell application” Polymer, 47, 7871 (2006)
34.Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M., “Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications” J. Membr. Sci. 240, 37 (2004)
35.Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M., “Proton conductivity and methanol transport behavior of cross‐linked PVA/PAA/silica hybrid membranes” Solid State Ionics, 176, 117 (2005).
36.Klein, L. C., “Sol-gel Processing of Silicates” Ann. Rev. Mater. Sci. 15, 227(1985)
37.Kurita, K., “Controlled functionalization of the polysaccharide chitin” Progress in Polymer Science, 26, 1921 (2001)
38.Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J., “Organically Modified Sol-Gel Sensors” Analytical Chemistry 67(1), 22A (1995)
39.Liu, Y. L.; Hsu, C. Y.; Su, Y. H.; Lai, J. Y., “Chitosan-Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Per¬vaporation Dehydration of Ethanol-Water Solutions” Biomacro¬molecules, 6, 368 (2005a)
40.Liu, Y. L.; Su, Y. H.; Lai, J. Y., “In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-GPTMS as a crosslinking agent” Polymer, 45, 6831 (2004)
41.Liu, Y. L.; Su, Y. H.; Lee, K. R.; Lai, J. Y., “Crosslinked organic– inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability” J. Membr. Sci., 251, 233 (2005b)
42.Manea, C. and Mulder, M., “Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications” J. Membr. Sci., 206, 443 (2002)
43.Miyake, N.; Wainright, J. S.; Savinell, R. F., “Evaluation of a sol-gel derived Nafion/silica hybrid membranes for proton electrolyte membrane fuel cell applications I. Proton conductivity and water content” J. Electrochem. Soc., 148, A898 (2001a)
44.Miyake, N.; Wainright, J. S.; Savinell, R. F., “Evaluation of a sol-gel derived Nafion/silica hybrid membranes for proton electrolyte membrane fuel cell applications II. Methanol uptake and methanol permeability” J. Electrochem. Soc., 148, A905 (2001b)
45.Mochizuki, A.; Amiya, S.; Sato Y.; Ogawara, H.; Yamashita, S., “Per¬vaporation Separation of Water/Ethanol Mixtures through Polysaccharide Membranes. V. The Relationships between the Permselectivity of Chitosan Salt Membrane and Its Solid State Structure” J. Appl. Polym. Sci., 40, 633 (1990)
46.Moharram, M. A.; Balloomal, L. S.; El-Gendy, H. M., “Infrared study of the complexation of poly(acrylic acid) with poly(acrylamide)” J. Appl. Polym. Sci., 59, 987 (1996)
47.Mukoma, P.; Jooste, B. R.; Vosloo, H. C. M., “Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells” J. Power Sources 136, 16-23 (2004)
48.Nakajima, H.; Nomura, S.; Sugimoto, T.; Nishikawa, S.; Honma, I., “High Temperature Proton Conducting Organic/Inorganic Nanohybrids for Polymer Electrolyte Membrane Part II” J. Electrochem. Soc., 149, A953 (2002)
49.Nam, S. Y. and Lee, Y. M., “Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes” J. Membr. Sci., 135, 161 (1997)
50.Nunes, S. P.; Ruffmann, B.; Rikowski, E.; Vetter, S.; Richau, K., “Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells” J. Membr. Sci., 203, 215 (2002)
51.Okamoto, K.; Yin,Y., Yamada, O.; Islam, M. N.; Honda, T.; Mishima, T;, Suto, Y.; Tanaka, K.; Kita, H., “Methanol permeability and proton conductivity of sulfonated co-polyimide membranes” J. Membr. Sci., 258, 115 (2005)
52.Pivovar, B. S.; Wang, Y. X.; Cussler, E. L., “Pervaporation membranes in direct methanol fuel cells” J. Membr. Sci., 154, 155 (1999)
53.Ponce, M. L.; Prado, L.; Ruffmann, B.; Richau, K.; Mohr, R.; Nunes, S. P., “Reduction of methanol permeability in polyetherketone– heteropolyacid membranes” J. Membr. Sci., 217, 5 (2003)
54.Ponce, M. L.; Prado, L. A. S. de A.; Silva, V.; Nunes, S. P., “Membranes for direct methanol fuel cell based on modified heteropolyacids” Desalination, 162, 383 (2004)
55.Prater, K. B., “Polymer Electrolyte Fuel Cells: A Review of Recent Developments” J. Power Sources, 51, 129 (1994)
56.Pu, H. T.; Meyer, W. H.; Wegner, G.; “Proton transport in polybenzimidazole blended with H3PO4 or H2SO4” J. Polym. Sci. Part B: Polymer Physics, 40, 663 (2002)
57.Rhim, J. W.; Park, H. B.; Lee, C. S.; Jun, J. H.; Kim, D. S.; Lee, Y. M., “Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes” J. Membr. Sci, 238, 143 (2004)
58.Ruffmann, B.; Silva, H.; Schulte, B.; Nunes, S. P., “Organic/inorganic composite membranes for application in DMFC” Solid State Ionics, 162-163, 269 (2003)
59.Shao, Z. G.; Wang, X.; Hsing, I. M., “Composite Nafion-polyvinyl alcohol membranes for the direct methanol fuel cell” J. Membr. Sci., 210, 147 (2002)
60.Shieh, J. J. and Huang, R. Y. M., “Pervaporation with chitosan membranes II. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol-water mixtures” J. Membr. Sci., 127, 185 (1997)
61.Silva, V. S.; Schirmer, J.; Reissner, R.; Ruffmann, B.; Silva, H.; Mendes, A.; Madeira, L.M.; Nunes, S. P., “Proton electrolyte membrane properties and direct methanol fuel cell performance II. Fuel cell performance and membrane properties effects” J. Power Sources, 140, 41 (2005)
62.Smitha, B.; Sridhar, S.; Khan, A. A., “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells” Macromolecules, 37, 2233 (2004)
63.Smitha, B.; Sridhar, S.; Khan, A.A., “Synthesis and Characterization of Poly(vinyl alcohol) Based Membranes for Direct Methanol Fuel Cell” J. Appl. Polym. Sci., 95, 1154 (2005a)
64.Smitha, B.; Sridhar, S.; Khan, A. A., “Chitosan-sodium alginate polyion complexes as fuel cell membranes” European Polym. J., 41, 1859 (2005b)
65.Smitha, B.; Sridhar, S.; Khan, A. A., “Chitosan-poly(vinyl-pyrrolidone) blends as membranes for direct methanol fuel cell applications” J. Power Sources, 159(2), 846 (2006)
66.Sone, Y.; Ekdunge, P.; Simonsson D., “Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC impedance Method” J. Electrochem. Soc., 143, 1254 (1996)
67.Staiti, P.; Minutoli, M.; Hocevar, S., “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application” J. Power Sources, 90, 231 (2000)
68.Uragami, T.; K.; Matsugi, H.; Miyata, T., “Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic‐Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane”, Macromolecules, 38, 8440 (2002).
69.Uzun, I., “Kinetics of the adsorption of reactive dyes by chitosan” Dyes and Pigments” 70, 76(2006)
70.Vargas, M. A.; Vargas, R. A.; Mellander, B-E., “New proton conducting membranes based on PVAL/H3PO2/H2O” Electrochimica Acta, 44, 4227 (1999)
71.Wan, Y., Creber, K. A. M.; Peppley, B.; Bui, V. T., “Ionic Conductivity and Related Properties of Crosslinked Chitosan Membranes” J. Appl. Polym. Sci. 89, 306-317 (2003a).
72.Wan, Y.; Creber, K. A. M.; Peppley, B.; Bui, V. T., “Synthesis Characterization and Ionic Conductive Properties of Phosphorylated Chitosan Membranes” Macromol. Chem. Phys. 240, 850 (2003b)
73.Wan, Y.; Creber, K. A. M.; Peppley, B.; Bui, V. T., “Structure and ionic conductivity of a series of di-o-butyrylchitosan membranes” J. Appl. Polym. Sci. 94, 2309 (2004)
74.Won, W. Y.; Feng, X. S.; Lawless, D., “Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes” Separation Purification Technology, 31, 129 (2003)
75.Woo, Y.; Oh, S. Y.; Kang, Y. S.; Jung, B., “Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell” J. Membr. Sci., 220, 31 (2003)
76.Wycisk, R.; Lee, J. K.; Pintauro, P. N., “Sulfonated polyphosphazene -polybenzimidazole membranes for DMFCs” J. Electrochem. Soc., 152, A892 (2005)
77.Zaidi, S. M.; Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S. J., “Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications” J. Membr. Sci., 173, 17 (2000)
78.Zhang, Q. G.; Liu, Q. L.; Jiang, Z. Y.; Chen, Y., “Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes” J. Membr. Sci., 287, 237 (2007)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw