進階搜尋


 
系統識別號 U0026-0812200913435995
論文名稱(中文) 多孔性瀝青混凝土堵塞之定量分析與實驗室模擬
論文名稱(英文) Quantitative Analyses and Laboratory Simulation of Clogging in Porous Asphalt Concrete
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 陳彥翔
研究生(英文) Yen-Hsiang Chen
電子信箱 n6694430@mail.ncku.edu.tw
學號 n6694430
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 口試委員-徐登文
口試委員-沈得縣
口試委員-林志棟
指導教授-陳建旭
口試委員-蔡攀鳌
中文關鍵字 多孔性瀝青混凝土  壓密  堵塞  透水試驗 
英文關鍵字 consolidation  porous asphalt concrete  clogging  permeability test 
學科別分類
中文摘要 多孔性瀝青混凝土具有較高的孔隙率(約20 %),因此透水性較好且行車噪音較低,國內已有許多路段採用多孔性瀝青混凝土鋪面。然而多孔性瀝青混凝土內部之孔隙會隨著時間漸漸堵塞,造成孔隙率的降低進而影響透水性能,目前國外雖有改善的方法(如日本使用高壓水柱清洗),然對堵塞的機制並沒有一定量之分析與研究,因此本研究即針對多孔性瀝青混凝土進行實驗室堵塞模擬,量測其透水係數,建立堵塞與透水之關係。
研究中利用馬歇爾法製作3種不同厚度之試體(3 cm、5 cm、7 cm),首先探討厚度與水頭差對透水係數的影響,並利用土壤試驗中之三軸透水試驗加以比較,接著進行4種不同堵塞單元(10 g、5 g、3 g、1 g)之堵塞模擬,而後再量測其透水係數;此外在壓密部分以模擬胎壓之80 psi利用壓密儀進行壓密試驗,同樣量測其透水係數,以建立堵塞及壓密與透水係數之關係。在現地試驗部份,本研究選取國道3號白河、屏東工務段、國道10號岡山工務段,及台9線進行現地透水試驗,並取回鑽心試體量測其透水係數,建立出現地透水量與實驗室透水係數之關係。
試驗結果顯示,透水係數會隨試體厚度增加而增加,且隨水頭差增加而降低,而實驗室透水之變異係數為0.23,較三軸透水試驗的0.31為低,顯示實驗室透水對透水係數有較好之控制,且實驗室透水數據約為三軸透水數據之2倍。在堵塞量方面,堵塞單元較大者會造成透水係數迅速降低,如堵塞單元10 g、5 g、3 g、1 g 之初使透水係數降低率分別為41%、31%、21%、9%;另外砂塵堵塞最終使透水係數降低約50 %,而壓密則降低僅約10 %,顯示壓密行為也確實會影響透水係數,唯不如砂塵堵塞來的明顯。
在現地透水試驗部份,結果顯示開放交通時間越久,透水量有顯著下降,而車道間之透水量也會有差異,即中車道 > 內車道 > 外車道,且此差異隨時間增加會越為顯著。最後在現地透水量與實驗室透水係數間,兩者也如預期的呈現正相關性,且R2值均在0.8以上。
英文摘要 The porous asphalt concrete has higher porosity (about 20%), so it has better permeability and makes less noise, and was popular used in Taiwan. However, the porosity of porous asphalt concrete will getting smaller and fewer with opening to traffic, and this will also result in the reduction of permeability. Even we have several solutions to clogging problem (ex. high-pressure water flusher in Japan), there is not a complete quantitative analyses and researches for the mechanism of clogging. This paper puts focus on clogging problems, we conduct lab-simulation of clogging in porous asphalt concrete, evaluate the permeability, and develop the relation between permeability and clogging.
We make samples with three kinds of height by Marshall (3, 5, 7 cm), first we evaluate the effects of sample height and water head to permeability, also we use triaxial permeability test to compare the data with two tests. In the lab-simulation, we measure the permeability after conducting four units (10, 5, 3, 1 g) clogging process, and use 80 psi to compress samples for simulating consolidation clogging. After these processes, we can develop the relation between clogging factors and permeability of porous asphalt concrete. On the other hand, we choose four road sections to conduct in-situ permeability test, and get the core samples immediately for laboratory permeability test. By measuring the permeability of core samples we can also get the relation of data between in-situ and laboratory.
Testing results show that the permeability will increase with increase in height and decrease in water head. The COV (coefficient of variance) of laboratory and triaxial permeability test are 0.23 and 0.31, respectively. It means that the laboratory permeability test is better in control than triaxial ones, and it comes about twice to the result of triaxial test. In the part of clogging simulation, the larger clogging unit we use, the faster permeability will reduce, for 10, 5, 3, 1 g clogging unit, the initial permeability reduce rate are 41%, 31%, 21%, 9%, respectively. Besides, sand and dust clogging make permeability reduce up to 50%, and consolidation clogging is only around 10%, it means that the effect of sand and dust clogging to permeability is greater than consolidation clogging does.
In-situ testing result shows that the permeability will reduce with the time opening to traffic, and is also different between lanes, that is middle lane > inside lane > outside lane, and this different will become more significant with time. Finally, the in-situ permeability is in proportion to the test results of core samples, and the R2 values are all higher than 0.8.
論文目次 摘要……………………………………………………………..I
Abstract……………………………………………………….III
致謝…………………………………………………………….V
目錄…………………………………………………………..VII
圖目錄…………………………………………………………XI
表目錄………………………………………………………..XV
第一章 緒論…………………………………………………1-1
1.1 前言…………………………………………………………..1-1
1.2 研究動機…………………………………………………..…1-3
1.3 研究目的…………………………………………………..…1-3
1.4 研究範圍……………………………………………………..1-4
二、文獻回顧…………………………………………………2-1
2.1 多孔性瀝青混擬土……………………….………………….2-1
2.1.1 多孔性瀝青混凝土路面之發展狀況…………………2-1
2.1.2 多孔性瀝青混凝土路面組成與材料…………………2-2
2.2 日本多孔性瀝青混凝土配合設計…………………………..2-8
2.2.1 選定目標孔隙率…………………………………….2-10
2.2.2 確定嘗試級配與嘗試瀝青含量…………………….2-10
2.2.3 夯壓試體…………………………………………….2-11
2.2.4 計算孔隙率………………………………………….2-11
2.2.5 決定最佳瀝青含量………………………………….2-12
2.2.6 配合設計試驗值檢驗……………………………….2-14
2.3 多孔性瀝青混凝土之孔隙…………………………………2-15
2.3.1 單位重……………………………………………….2-15
2.3.2 孔隙率……………………………………………….2-17
2.4 多孔性瀝青混凝土路面之排水機制………………………2-21
2.5 多孔性瀝青混凝土路面之堵塞與透水……………………2-23
2.5.1 堵塞之成因………………………………………….2-23
2.5.2堵塞材料……………………………………………...2-24
2.5.3 實驗室堵塞程序…………………………………….2-25
2.6透水係數…………………………………………………….2-26
2.6.1 透水係數之基本原理……………………………….2-26
2.6.2 透水係數相關文獻………………………………….2-27
2.6.3 透水係數之比較…………………………………….2-35
三、試驗方法及材料…………………………………………3-1
3.1 研究方法與流程……………………………………………..3-1
3.2 馬歇爾試體製作……………………………………………..3-3
3.3 孔隙率………………………………………………………..3-3
3.4 實驗室模擬試體堵塞程序…………………………………..3-5
3.4.1 堵塞材料………………………………………………3-5
3.4.2 試體堵塞程序…………………………………………3-5
3.5 實驗室透水試驗……………………………………………..3-6
3.6 三軸透水試驗………………………………………………3-11
3.7 壓密試驗……………………………………………………3-14
3.8 現地透水試驗………………………………………………3-15
第四章 試驗結果與討論……………………………………4-1
4.1 試驗材料基本物性…………………………………………..4-1
4.1.1 黏結料-改質Ⅲ型……………………………………..4-1
4.1.2 粒料……………………………………………………4-2
4.2 多孔性瀝青混凝土配合設計………………………………..4-3
4.2.1 選定目標孔隙率………………………………………4-3
4.2.2 嘗試級配與嘗試瀝青含量……………………………4-3
4.2.3 馬歇爾試體製作………………………………………4-4
4.2.4 決定最佳瀝青含量……………………………………4-5
4.3透水試驗……………………………………………………...4-7
4.3.1 試體厚度與透水係數…………………………………4-7
4.3.2 水頭差與透水係數……………………………………4-9
4.4 堵塞程序與透水試驗………………………………………4-11
4.4.1 台灣多孔性瀝青混凝土路面之堵塞情況………….4-11
4.4.2 堵塞機制與程序…………………………………….4-12
4.4.3 確定堵塞水量……………………………………….4-14
4.4.4 確認實際堵塞量…………………………………….4-14
4.4.5 不同堵塞量與透水係數…………………………….4-16
4.6 壓密與透水係數……………………………………………4-23
4.7 現地數據分析………………………………………………4-26
4.7.1 現地透水試驗……………………………………….4-26
4.7.2 現地透水量之ANOVA分析………………………..4-30
4.7.3 現地試體之實驗室透水試驗……………………….4-31
第五章 結論與建議………………………….....................5-1
5.1 結論…………………………………………………………..5-1
5.2 建議…………………………………………………………..5-3
參考文獻 工程會施工綱要(2003)「排水性改質瀝青混凝土鋪面」,台灣。
日本道路協會(1996)「排水性鋪裝技術指針」,東京。
陳茂雄、呂學士、陳順興(2001)「排水性瀝青舖面應用於國道高速公路之探討」。中國土木水利工程學刊,第 28 卷,第三期,第 13 – 26 頁。
蔡攀鰲(2000)「排水性鋪面設計及施工」,中國土木水利工程學刊,第 27 卷,第一期,第 33 – 37 頁。
朱智豪(2005)Bailey Method 於排水性瀝青混凝土之應用,國立成功大學土木工程研究所碩士論文,台南。
葉宗瑋 (2005)孔隙率對排水瀝青混凝土成效之比較,國立成功大學土木工程研究所碩士論文,台南。
潘厚志(2004)VMA 變化對於瀝青混凝土性質之影響,國立成功大學土木工程研究所碩士論文,台南。
蘇育民 (2001)瀝青膠漿性質對於排水瀝青混凝土成效之影響,國立中央大學土木研究所碩士論文,中壢。
Abdullah, W. S., Obaidat, M. T. (1998). “ Influence of Aggregate Type And Gradation on Voids of Asphalt Concrete Pavements,” Journal of Materials in Civil Engineering, Vol.10, pp.76-85.
Elvik, R., Greibe, P. (2005). “ Road Safety Effects of Porous Asphalt : A Systematic Review of Evaluation Studies, ” Accident Analysis and Prevention, Vol.37, pp.515-522.

Field, R., Masters, H., and Singer, M. (1982). “Porous Pavement: Research, Development, and demonstration,” Journal of Transportation Engineering, Vol.108, pp.244-258.

Fwa, T. F., Tan, S. A., and Guwe, Y. K. (1999). “Laboratory Evaluation of Clogging Potential of Porous Asphalt Mixtures,” Transportation Research Record, n 1681, pp.43-49.

Hossam F. H., Salim Al-Oraimi, and Ramzi T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol.17, pp.416-422.

Jones, R. H., Jones H. A. (1989) “Granular Drainage Layers in Pavement Foundations,” International Symposium on Unbound Aggregates in Roads, 3rd, University of Nottingham, pp.55-69.

Kanitpong, K., Benson, C. H., and Bahia, H. U. (2001). “Hydraulic Conductivity (Permeability) of Laboratory-Compacted Asphalt Mixtures,” Transportation Research Record, n 1767, pp.25-32.
Kevin, D. H. (2004). “Comparison of Falling-Head and Constant-Head Techniques, Estimating Field Permeability of Hot-Mix Asphalt Pavement,” Transportation Research Record, n 1891, pp.23-31.

Kumar, A., Goetz, W. H., and Lafayette, W. (1977). “Laboratory Measurement of Permeability of Compacted Asphalt Mixtures,” Transportation Research Record, n 659, pp.37-43.

Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003). “Investigation of The Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of Association of Asphalt Paving Technologists, Vol.72, pp.551-594.

Moore, L. M., Hicks, R. G., and Rogge, D. F. (2001). “Design, Construction, and Maintenance Guidelines for Porous Asphalt Pavements,” Design and Rehabilitation of Pavements, Transportation Research Record, n 1778, pp.91-99.

Nakanishi, H., Takei, S., and Goto, K. (1995). “Suggestion to the Improvement in Durability of the Function of Porous Asphalt Pavements,” Road Construction, Japan.


Ohkawa, H., Sato, T., and Hokari, K. (1993). “Study on the Estimation of Permeability Coefficient of Drain Asphalt,” Proceedings of the Japan Society of Civil Engineers, n 478, pp.101-108.

Tan, S. A., Fwa, T. F., and Chai, K. C. (2004). “Drainage Consideration For Porous Asphalt Surface Course Design,” Transportation Research Board 2004 Annual Meeting, Washington, D.C. (CD-ROM).

Tan, S. A., Fwa, T. F., and Han, C. T. (2003). “Clogging Evaluation of Permeable Bases,” Journal of Transportation Engineering, Vol.129, pp.309-315.

Wilson, L., Narasimhan, A., and Venkateshan, S. P. (2006). “Permeability and Form Coefficient Measurement of Porous Inserts With Non-Darcy Model Using Non-Plug Flow Experiments,” Journal of Fluids Engineering, Transactions of the ASME, Vol.128, n 3, pp.638-642.

Wu, F. C. and Huang, H. T. (2000). ”Hydraulic Resistance Induced by Deposition of Sediment in Porous Medium.” Journal of Hydraulic Engineering, Vol.126, n 7, pp.547-551.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw