進階搜尋


 
系統識別號 U0026-0812200913432841
論文名稱(中文) 探討第一型鈉氫交換調控蛋白在表皮生長因子促進子宮頸癌侵襲性的角色
論文名稱(英文) EGF upregulates NHE1 that is important for cervical cancer invasiveness
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 95
學期 2
出版年 96
研究生(中文) 江毅涵
研究生(英文) Yi-Han Chiang
電子信箱 yihanchiang@yahoo.com
學號 s2694107
學位類別 碩士
語文別 英文
論文頁數 37頁
口試委員 口試委員-周振陽
指導教授-沈孟儒
口試委員-呂增宏
中文關鍵字 表皮生長因子  子宮頸癌  第一型鈉氫交換調控蛋白 
英文關鍵字 NHE1  EGF  cervical cancer 
學科別分類
中文摘要 研究目的:本研究主要探討表皮生長因子 (EGF) 如何調控鈉氫交換調控蛋白第一型 (NHE1) 以促進子宮頸癌侵襲力,及其於早期子宮頸癌臨床之重要性。

實驗設計:本研究利用正常子宮頸上皮細胞與兩株子宮頸癌細胞,來探討鈉氫交換調控蛋白第一型的生理功能。並藉由臨床92個早期子宮頸癌病患的組織切片,利用免疫螢光染色技術,探討NHE1與子宮頸癌臨床預後之相關性。

結果:我們首先在臨床組織切片發現,相較NHE1於正常子宮警組織微量的表現,NHE1在各種癌症組織過度表現並呈現不同程度的表現量,進一步分析發現NHE1的表現量與病患預後情況高度相關。如同in vivo的發現,與正常子宮頸上皮細胞比較,子宮頸癌細胞SiHa 和CaSki表現大量NHE1並擁有較佳的NHE1生理功能,例如:細胞體積調節、細胞爬行與侵襲能力。在臨床組織切片的染色中發現EGF和NHE1的表現在子宮頸癌的樣本中均表現在相同位置,兩者正呈現正相關的表現量。在子宮頸癌CaSki中證實EGF隨著時間促進NHE1的表現。意味著在in vivo中,EGF可能透過autocrine或paracrine 的方式促進NHE1的表現。NHE1專一性抑制劑HOE694抑制了CaSki 細胞基本的爬行能力,同時也抑制了因EGF增加的爬行能力。最後,利用影像的分析與免疫沉澱法證實,EGF促使了NHE1位移到正在爬行的細胞前端的瓣狀偽足 (lamellipodia) 並增加其與Ezrin的結合,以重整細胞骨架促進細胞的爬行。

結論: EGF經由轉譯後的修飾以增加NHE1表現量,並且NHE1於EGF訊息傳遞路徑中扮演著促進子宮頸癌生長和侵襲的重要角色。
英文摘要 Purpose: This study is to investigate the mechanisms by which epidermal growth factor (EGF) regulates Na+/H+ exchanger NHE1 to promote cervical cancer cell invasiveness and the clinical significance in early-stage cervical cancer.
Experimental design: The cellular functions of NHE1 were studied in the primary culture of normal cervical epithelial cells and two cervical cancer cell lines. The clinical implication was evaluated by immunofluorescent stainings in 92 surgical specimens of early-stage cervical cancer.
Results: NHE1 protein was scanty in normal or noncancerous cervical tissues of all surgical specimens examined. Tumor tissues clearly expressed NHE1 protein with different amounts. The differential expression level of NHE1 is associated with the clinical outcome. NHE1 protein was also differentially expressed between normal cervical epithelial cells and cervical cancer cell lines (SiHa and CaSki). Cervical cancer cells benefit some enhanced cellular functions from NHE1 abundance, such as cell volume regulation, migration and invasion. Interestingly, NHE1 colocalized with EGF in cervical cancer tissues. Studies in cell culture systems indicated that EGF stimulated NHE1 abundance in a time-dependent manner by posttranslational modification. This implies a likely autocrine or paracrine EGF stimulation of NHE1 production in vivo. Pharmacological inhibition of NHE1 activity markedly inhibited the basal and EGF-stimulated cervical cancer cell migration. Image studies and immunoprecipitaion experiments suggest that EGF induced NHE1 translocation to the leading-edge lamellipodia, where NHE1 interacted with actin-associated protein Ezrin, thereby remodeling cytoskeleton and stimulating cervical cancer cell migration.
Conclusion: EGF upregulates NHE1 by posttranslational modification that is important for cervical cancer cell invasiveness.
論文目次 Content
Abstract --------------------------------------------I
中文摘要 -----------------------------------------III
Content --------------------------------------------IV
Figure Content -----------------------------------V
Introduction ---------------------------------------1
Materials and methods --------------------------4
Results ---------------------------------------------10
Discussion ----------------------------------------16
References ----------------------------------------22
Table 1. --------------------------------------------27
Figures ---------------------------------------------28
參考文獻 1. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, and McEwan RN. 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239-3245.
2. Araújo A, Ribeiro R, Azevedo I, Coelho A, Soares M, Sousa B, Pinto D, Lopes C, Medeiros R, and Scagliotti GV. 2007. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer--a review of the literature. Oncologist 12:201-210.
3. Baumgartner M, Patel H, and Barber DL. 2004. Na+/H+ exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am. J. Physiol. Cell Physiol. 287: C844-850.
4. Brand FX, Ravanel N, Gauchez AS, Pasquier D, Payan R, Fagret D, and Mousseau M. 2006. Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res 26: 463-470.
5. Campbell MP, Groehler LA, Lee MK, Ouellette MM, Khazak V, and Der JC. 2007. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and PI3K signaling. Cancer. Res. 67:(5). March 1.
6. Cardone RA, Casavola V, and Reshkin SJ. 2005a.The role of disturbed pH
dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795.
7. Cardone RA, Bagorda A, Bellizzi A, Busco G, Guerra L, Paradiso A, Casavola V, Zaccolo M, and Reshkin SJ. 2005b. Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines. Mol Biol Cell 16:3117–3127.
8. Cardone RA, Bellizzi A, Busco G, Weinman EJ, Dell'Aquila ME, Casavola V, Azzariti A, Mangia A, Paradiso A, and Reshkin SJ. 2007. The NHERF1 PDZ2 domain regulates PKA-RhoA-p38-mediated NHE1 activation and invasion in breast tumor cells. Mol. Biol. Cell. 18:1768-1780.
9. Chen HC. 2005. Boyden chamber migration assay. Methods Mol Biol 2005 294:15-22.
10. Chou CY, Shen MR, and Wu SN. 1995. Volume-sensitive chloride channels associated with human cervical carcinogenesis. Cancer Res 55:6077-6083.
11. Datta J, Majumder S, Kutay H, Motiwala T, Frankel W, Costa R, Cha CH, MacDougald AO, Jacob TS, and Ghoshal K. 2007. Metallothionein expression is suppressed n primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/Enhancer Binding Protein α by PI3K signaling cascade. Cancer. Res. 67:(6). March 15
12. Denker SP, Huang DC, Orlowski J, Furthmay H, and Barber DL. 2000. Direct binding of the Na+/H+ exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6:1425–1436.
13. Denker SP and Barber DL. 2002. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na+/H+ exchanger NHE1. J Cell Biol 159: 1087-1096.
14. Dudeja PK, Hafez N, Tyagi S, Gailey CA, Toofanfard M, Alrefai WA, Nazir TM, Ramaswamy K, and Al-Bazzaz FJ. 1999. Expression of the Na+/H+ and Cl-/HCO-3 exchanger isoforms in proximal and distal human airways. Am J Physiol 276:L971-978.
15. Ghosh-Choudhury N, Charan Mandal C, and Ghosh-Choudhury G.. 2007.
Statin-induced ras activation integrates the PI3K signal to Akt and MAPK for BMP-2 expression in osteoblast differentiation. J. Biol. Chem. 282:4983-4993.
16. Govindarajan B, Sligh EJ, Vincent JB, Li M, Canter AJ, Nickoloff JB,
Rodenburge JR, Smeitink AJ, Oberley L, Zhang Y, Slingerland J, Arnold SR., Cochen C, Hilenski L, Griendling K, Martinez-Diez M, Cuezva MJ, and Arbiser LJ. 2007. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J. clin. Invest. 117:719-729.
17. H. Y. Qureshi., R. Ahmad, J. Sylvester, and M. Zafarullah. Requirement of PI3K/Akt signaling pathway for regulation of tissue inhibitor of metalloproteinase-3 gene expression by TGF-β in human chondrocytes. Cell. Signal. Doi:10.1016/j.cellsig.2007.02.007.
18. Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M. 2006. Targeting the EGFR pathway for cancer therapy. Curr Med Chem13:3483-3492.
19. Karmazyn M. 2001. Role of sodium-hydrogen exchange in cardiac hypertrophy and heart failure: a novel and promising therapeutic target. Basic Res Cardiol 96: 325–328.
20. Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J. 2004. Protein Kinase Cα/β inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res 64:5693-5701.
21. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J. 2000. Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J Cell Sci 113:3649-3662.
22. Li M, Zhang Z, Hill LD, Wang H, and Zhang R. 2007. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer. Res. 67:(5). March 1.
23. Malo ME, and Fliegel L. 2006. Physiological role and regulation of the Na+/H+ exchanger. Can. J. Physiol. Pharmacol 84:1081-1095.
24. Maly K, Strese K, Kampfer S, Ueberall F, Baier G, Ghaffari-Tabrizi N, Grunicke HH, and Leitges M. 2002. Critical role of protein kinase C alpha and calcium in growth factor induced activation of the Na+/H+ exchanger NHE1. FEBS Lett 521:205-210.
25. Ono M, and Kuwano M. 2006. Molecular Mechanisms of Epidermal Growth Factor Receptor (EGFR) Activation and response to Gefitinib and Other EGFR-targeting drugs. Clin Cancer Res 12:7242-7251.
26. Mosesson Y, and Yarden Y. 2004. Oncogenic growth factor receptors: implications for signal transduction therapy. Seminar in Cancer Biology 14:262-270.
27. Orlowski J, and Grinstein S. 2004. Diversity of the mammalian Na+/H+ exchanger SLC9 gene family. Pflugers Arch 447:549–565.
28. Paradiso A, Cardone RA, Bellizzi A, Bagorda A, Guerra L, Tommasino M, Casavola V, and Reshkin SJ. 2004. The Na+/H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast Cancer Res 6:R616–R628
29. Pedersen SF. 2006. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflugers Arch 452:249-259.
30. Putney LK, Denker SP, and Barber DL. 2002. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552.
31. Reshkin SJ, Bellizzi A, Albarani V, Guerra L, Tommasino M, Paradiso A, and Casavola V. 2000. Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na+/H+ exchange, motility, and invasion induced by serum deprivation. J Biol Chem 275:5361–5369.
32. Reuter CWM, Morgan MA, and Eckardt A. 2007. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br J Cancer 96:408-416.
33. Scaltriti M, and Baselga J. 2006 The epidermal growth factor receptor pathway: A model for targeted therapy. Clin Cancer Res 12:5268-5272.
34. Schoell WM, Janicek MF, and Mirhashemi R. 1999. Epidemiology and biology of cervical cancer. Semin Surg Oncol 16:203-211.
35. Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, and Chou CY. 2006. Insulin-like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis 27: 962-971.
36. Shen MR, Chou CY, and Ellory JC. 2000. Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflugers Arch 440:751-760.
37. Shen MR, Chou CY, Hsu KF, and Ellory JC. 2002. Osmotic shrinkage of human cervical cancer cells induces an extracellular Cl--dependent nonselective cation channel, which requires p38 MAPK. J Biol Chem 277:45776-45784.
38. Shen MR, Chou CY, Hsu KF, Hsu YM, Chiu WT, Tang MJ, Alper SL, and Ellory JC. 2003. KCl cotransport is an important modulator of human cervical cancer growth and invasion. J Biol Chem 278:39941-39950.
39. Stock, C et al. 2005. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238.
40. Stock C. and Schwab A. 2006. Role of the Na+/H+ exchanger NHE1 in cell migration. Acta Physiologica 187:149–157.
41. Syrjanen K, Kataja V, Yliskoski M, Chang F, Syrjanen S, and Saarikoski S. 1992. Natural history of cervical human papillomavirus lesions does not substantiate the biologic relevance of the Bethesda System. Obstet Gynecol 79:675-682.
42. Tazzari, P. L., Cappellini, A., Evangelisti, C., Papa, V., Martinelli, G., Conte, R., Cocco, L., McCubrey, J. A., and Martelli, A. M. Multidrug resistance-associated protein 1 expression in under the control of the PI3K/Akt signal transduction network in human acut myelogenous leukemia blasts (2007). Leukemia. 21, 427-438.
43. Wang Haihe, Quah YS, Dong JM, Manser E, Tang JP, and Zeng Q. 2007. PRL-3 down-regulates PTEN expression and signals through PI3K to promote Epithelial-Mesenchymal Transition. Cancer. Res. 67:(7). April 1.
44. Yang W, Dyck JR, Wang H, and Fliegel L. 1996. Regulation of NHE-1 promoter in mammalian myocardium. Am J Physiol 270:H259-266.
45. zur Hausen. 1991. Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184:9-13.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw