進階搜尋


 
系統識別號 U0026-0812200913430806
論文名稱(中文) 以展望理論探究買賣觀點之最適網路拍賣策略
論文名稱(英文) The Optimization of Online Auction Strategy from the Perspectives of Seller and Bidder: An Application of Prospect Theory
校院名稱 成功大學
系所名稱(中) 企業管理學系碩博士班
系所名稱(英) Department of Business Administration
學年度 95
學期 2
出版年 96
研究生(中文) 鄭正豐
研究生(英文) Cheng-Feng Cheng
電子信箱 cheng.cf@msa.hinet.net
學號 r4891115
學位類別 博士
語文別 英文
論文頁數 189頁
口試委員 口試委員-陳正男
口試委員-徐村和
指導教授-吳萬益
指導教授-陳淑惠
口試委員-譚大純
口試委員-張心馨
口試委員-方世杰
口試委員-張淑昭
口試委員-蔡明田
中文關鍵字 網路拍賣策略  賽局理論  展望理論  淩越策略 
英文關鍵字 Online auction strategy  Prospect theory  Game theory  Dominant strategy 
學科別分類
中文摘要 本研究旨在以網路拍賣競標者與賣方的觀點發展數理分析模型,並且結合實證研究以確認數理分析模型的貢獻。首先,本研究運用展望理論的概念,以探究拍賣品質策略與競標屬性透過拍賣價格在網路拍賣所造成的衝擊。拍賣品質策略由資訊品質、系統品質與服務品質三者所構成。競標屬性則為競標者所面臨的競標條件,例如起標價格、拍賣期間、競標成本或交易成本等。其次,本研究逐步分析拍賣品質策略與競標屬性在競標者滿意度、競標強度與賣方滿意度產生的影響效果。再者,本論文運用動態賽局理論的概念,以研究競標者參與網路拍賣的競標策略與行為並發展動態賽局模型。根據動態賽局模型,以確認在網路拍賣的競爭環境下具有優勢的凌越競標策略。
實證研究的結果顯示拍賣品質策略與競標屬性兩者皆可提昇賣方成本、網路拍賣價格、競標者滿意度與競爭強度;較高的網路拍賣價格會降低競標者滿意度並提昇賣方成本;較高的賣方成本會降低賣方滿意度。另外,在網路拍賣競標者觀點之下,競標者滿意度可提昇競爭強度。以網路拍賣的賣方觀點,網路拍賣價格與競爭強度可以提昇賣方的滿意度。
英文摘要 This study attempts to develop mathematical models for online auctions based on the perspectives of both online bidders and sellers and then adopts an empirical analysis to il-lustrate the viability of the mathemati¬cal models. First of all, the study applies prospect theory to investigate the impacts of auction quality strategy and bidding characteristics on bidder satisfaction and competitive intensity through auction prices in online auctions. The auction quality strategy consists of information quality, system quality, and service quality. Bidding characteristics are the conditions faced by bidders, such as starting price, auction length, bidding cost, and transaction cost. Second, this study investigates the effects of the above auction quality strategy and bidding characteristics strategy on bidder satisfaction, competitive intensity, and seller satisfaction, respectitively. Third, the study employs dy-namic game theory to integrate the online auction strategy from the bidders’ perspectives. This approach provides a dynamic game model to identify the dominant strategy in com-petitive online auction environments.
The results of path analysis show that both auction quality strategy and bidding char-acteristics can enhance seller costs, online auction prices, bidder satisfaction, and competi-tive intensity. Higher online auction prices decrease online bidder satisfaction and in-creases seller costs. Higher seller costs decrease online seller satisfaction. In addition, bid-der satisfaction enhances competitive intensity from the bidders’ perspective in the online environment. From the sellers’ perspective, auction price and competitive intensity en-hances seller satisfaction in the online environment.
論文目次 摘要....................................................I
ABSTRACT...............................................II
TABLE OF CONTENTS.......................................I
LIST OF TABLES..........................................V
LIST OF FIGURES.......................................VII
CHAPTER ONE INTRODUCTION...............................1
1.1 Research Background and Motivations.................1
1.2 The Purpose of the Study............................5
1.3 Structure of the Research...........................6
CHAPTER TWO LITERATURE REVIEW AND HYPOTHESES..........7
2.1 The Theoretical Based in This Study.................7
2.1.1 The law of diminishing marginal utility...........7
2.1.2 Prospect theory...................................9
2.1.3 Dynamic Game theory..............................11
2.2 Definition of Research Constructs..................14
2.2.1 Auction Quality Strategy.........................14
2.2.2 Bidding Characteristics..........................15
2.2.3 Auction Price....................................15
2.2.4 Bidder Satisfaction..............................16
2.2.5 Competitive Intensity............................16
2.2.6 Seller Costs.....................................17
2.2.7 Seller Satisfaction..............................18
2.3 Interrelationships among Research Constructs and Hypotheses.............................................18
2.3.1 The Impact of Auction Quality Strategy...........18
2.3.2 The Impact of Bidding Characteristics............21
2.3.3 The Impact of Auction Price......................22
2.3.4 Interrelationships among Bidder Satisfaction, Competitive Intensity, and Seller Satisfaction.........24
2.3.5 Interrelationship between Seller Costs and Seller Satisfaction...........................................24
2.4 Mathematical Models Adopting the Concepts of Diminishing Marginal Utility and Prospect theory.......25
2.4.1 Focus on Maximum Bidder Satisfaction under Given Resources..............................................34
2.4.2 Focus on Maximum Seller Satisfaction under Given Resources..............................................35
CHAPTER THREE DEVELOPMENT OF THE MATHEMATICAL MODELS.................................................37
3.1 Mathematical Models from Bidder’s Perspective.....37
3.1.1 Applying Natural Logarithms and Trigonometric Functions Based on Bidder’s Perspective...............38
3.1.2 Applying Negative Exponential and Trigonometric Functions Based on Bidder’s Perspective...............41
3.2 Mathematical Models from Seller’s Perspective.....44
3.2.1 Applying Natural Logarithmic Functions Based on Seller’s Perspective..................................44
3.2.2 Applying Negative Exponential Functions Based on Seller’s Perspective..................................47
3.2.3 The Optimal Values for Auction Quality Strategy and Bidding Characteristics................................48
3.3 Competition among Online Bidders...................55
3.3.1. Bidder Makes the First Move with an Infinite Price. ..............................................55
3.3.2. Bidder Makes a Later Move with an Infinite Price. ..............................................57
3.3.3. Bidder Makes the First Move and a Later Move with a Finite Price...........................................59
CHAPTER FOUR RESEARCH DESIGN AND METHODOLOGY..........63
4.1 The Research Model.................................63
4.2 Construct Measurement..............................64
4.2.1 Auction Quality Strategy.........................65
4.2.2 Bidding Characteristics..........................66
4.2.3 Seller Costs.....................................67
4.2.4 Auction Price....................................68
4.2.5 Bidder Satisfaction..............................68
4.2.6 Competitive Intensity............................69
4.2.7 Seller Satisfaction..............................69
4.3 Hypotheses to be Tested............................70
4.4 Questionnaire Design...............................71
4.5 Sampling Plan......................................71
4.6 Data Analysis Procedures...........................71
4.6.1 Descriptive Statistics...........................71
4.6.2 Purification and Reliability of the Measurement Variables..............................................72
4.6.3 Interrelationships among Research Variables......73
CHAPTER FIVE DESCRIPTIVE ANALYSIS AND RELIABILITY TESTS ..............................................74
5.1 Descriptive Analysis...............................74
5.1.1 Data Collection..................................74
5.1.2 Characteristics of Respondents...................75
5.2 Measurement Results for Relevant Research Variables ..............................................76
5.5 Factor Analysis and Reliability Tests of Online Bidders’ Perspective..................................83
5.6 Factor Analysis and Reliability Tests of Online Sellers’ Perspective..................................90
CHAPTER SIX RESEARCH ANALYSIS AND RESULTS 100
6.1 Structural Equation Model of Online Bidders’ Perspective...........................................100
6.2 Structural Equation Model of Online Sellers’ Perspective...........................................115
6.3 The Optimization of Online Auction Strategy.......129
6.4 The Optimal Bidding Strategy for Online Bidders...135
CHAPTER SEVEN RESEARCH CONCLUSIONS AND CONTRIBUTIONS .............................................146
7.1 Research Conclusions..............................146
7.2 Managerial Implications and Contributions.........151
7.3 Limitation and Future Research....................154
REFERENCES............................................156
APPENDIX .............................................162
Appendix A: Optimal Online Auction Strategy based on Bidders’ Perspective.................................162
Appendix B: Optimal Online Auction Strategy based on Sellers’ Perspective.................................174
Appendix C: Questionnaire for Online Bidders..........181
Appendix D: Questionnaire for Online Sellers..........185
參考文獻 Abdellaoui, M., Barrios, C., & Wakker, P.P. Reconciling introspective utility with revealed preference: experimental arguments based on prospect theory. Journal of Economet-rics, 138 (1), 356-378, 2007.
Abreu, D. & Pearce, D. Bargaining, reputation, and equilibrium selection in repeated games with contracts. Econometrica, 75 (3), 653-710, 2007.
Ailawadi, K.L, Neslin, S.A., & Gedenk, K. (2001). Pursuing the value-conscious con¬sumer, store brands versus national brand promotions? Journal of Marketing, 65 (1), 71-89.
Airiau, S. & Sen, S. Strategic bidding for multiple units in simultaneous and sequential auctions. Group Decision and Negotiation, 12 (5), 397-413, 2003.
Anwar, S. McMillan, R., & Zheng, M. Bidding behavior in competing auctions: Evidence from eBay. European Economic Review, 50, 307-322, 2006.
Bajari, P. & Hortacsu, A. The winner’s curse, reserve prices, and endogenous entry: em-pirical insights from eBay auctions. The Rand Journal of Economics, 34 (2), 329-354, 2003.
Bansal, V. & Garg, R. Simultaneous independent online auctions with discrete bid incre-ments. Electronic Commerce Research, 5, 181-201, 2005.
Bapna, R., Goes, P., Gupta, A., & Jin, Y. User heterogeneity and its impact on electronic auction market design: an empirical exploration. MIS Quarterly, 28 (1), 21-42, 2004.
Bauer, H.H., Falk, T., & Hammerschmidt, M. eTransQual: a transaction process-based ap-proach for capturing service quality in online shopping. Journal of Business Research, 59 (7), 866-875, 2006.
Bierman, H. & Fernandez, L. Game Theory with Economic Applications, Reading, Mass: Addison-Wesley, 1998.
Bimbaum, M.H. & Bahra, J.P. Gain-loss separability and coalescing in risky decision making. Management Science, 53 (6), 1016-1028, 2007.
Bleichrodt, H., Abellan-Perpinan, J.M., Pinto-Prades, J., & Mendez-Martinez, I. Resolving inconsistencies in utility measurement under risk: tests of generalizations of expected utility. Management science, 53 (3), 469-482, 2007.
Brint, A.T. Investigating buyer and seller strategies in online auctions. Journal of the Op-erational Research Society, 54 (11), 1177-1188, 2003.
Bruce, N., Haruvy, E., & Rao, R. Seller rating, price, and default in online auctions. Jour-nal of Interactive Marketing, 18 (4), 37-50, 2004.
Carr, S.M. Note on online auctions with costly bid evaluation. Management Science, 49 (11), 1521-1528, 2003.
Churchill, G.A. & Brown, T.J. Basic Marketing Research, 5th, South-Western Col¬lege Pub. 2003
Clark, J., Kim, B., Poulton, R., & Milne, B. The role of low expectations in health and education investment and hazardous consumption. The Canadian Journal of Econom-ics, 39 (4), 1151-1172, 2006.
Dholakia, U.M. & Simonson, I. The effect of explicit reference points on consumer choice and online bidding behavior. Marketing Science, 24 (2), 206-219, 2005.
Dholakia, U.M. The usefulness of bidders’ reputation ratings to sellers in online auctions. Journal of Interactive Marketing, 19 (1), 31-40, 2004.
Ding, M., Eliashberg, J., Huber, J., & Saini, R. Emotional bidders-analytical and experi-mental examination of consumers’ behavior in a price line-like reverse auction. Man-agement Science, 51 (3), 352-364, 2005.
Dittmer, T. Diminishing marginal utility in Economics textbooks. Journal of Economic Education, 36 (4), 391-340, 2005.
Easley, R,F. & Tenorio, R. Jump bidding strategies in Internet auctions. Management Sci-ence, 50 (10), 1407-1419, 2004.
Forsythe, S.M. & Shi, B. Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56 (11), 867-876, 2003.
Geyskens, I., Steenkamp, J.E.M., & Kumar, N. A meta-analysis of satisfaction in market-ing channel relationships. Journal of Marketing Research, 36 (2), 223-238, 1999.
Gopal, R., Thompson, S., Tung, Y.A., & Whinston, A.B. Managing risks in multiple online auctions: an options approach. Decision Sciences, 36 (3), 397-425, 2005.
Gopal, R.D., Pathak, B., Tripathi, A.K., & Yin, F. From fatwallet to eBay: an investigation of online deal-forums and sales promotions. Journal of Retailing, 82 (2), 155-164, 2006.
Hair, J.F., Black, B., Babin, B., & Anderson, R.E. Multivariate Data Analysis, 6th, Upper Saddle River, N.J.: Pearson Prentice Hall, 2006.
Harris, K.E., Grewal, D., Mohr, L.A., & Bernhardt, K.L. Consumer responses to service recovery strategies: the moderating role of online versus offline environment. Journal of Business Research, 59 (4), 425-431, 2006.
Huang, G.Q., Zhang, X.Y., & Lo, V.H.Y. Integrated configuration of platform products and supply chains for mass customization: a game-theoretic approach. IEEE Transactions on Engineering Management, 54 (1), 156-171, 2007.
Ihori, T. & McGuire, M.C. Collective risk control and group security: the unexpected con-sequences of differential risk aversion. Journal of Public Economic Theory, 9 (2), 231-264, 2007.
Kahneman, D. & Tversky, A. Prospect theory, an analysis of decision under risk. Econo-metrica, 47(2), 263-291, 1979.
Kardes, F.R., Cronley, M.L., Kellaris, J.J., & Posavac, S.S. The role of selective informa-tion processing in price-quality inference. Journal of Consumer Research, 31 (2), 368-374, 2004.
Kohli, R., Devaraj, S., & Mahmood, M.A. Understanding determinants of online customer satisfaction, a decision process perspective. Journal of Management Information Sys-tems, 21 (1), 115-135, 2004.
Lozovanu, D. & Pickl, S. Algorithms and the calculation of Nash equilibria for multi-objective control of time-discrete systems and polynomial-time algorithms for dynamic c-games on networks. European Journal of Operational Research, 181 (3), 1214-1232, 2007.
Madden, G.J., smethells, J.R., Ewan, E.E., & Hursh, S.R. Tests of behavioral economic as-sessments of relative reinforcer efficacy: economic substitutes. Journal of the Experi-mental Analysis of Behavior, 87 (2), 219-240, 2007.
McKinney, V., Yoon, K., & Zahedi, F.M. The measurement of web-customer satisfaction, an expectation and disconfirmation approach. Information Systems Research, 13 (3), 296-315, 2002.
Mendelson, H. & Tunca, T. Strategic spot trading in supply chains. Management Science, 53 (5), 742-759, 2007.
Merriman, K.K. & Deckop, J.R. Loss aversion and variable pay: a motivational perspective. The International Journal of Human Resource Management, 18 (6), 1026-1041, 2007.
Millet, I., Parente, D H., Fizel, J.L., & Venkataraman, R.R. Metrics for managing online procurement auctions. Interfaces, 34 (3), 171-179, 2004.
Negash, S., Ryan, T., & Igbaria, M. Quality and effectiveness in web-based customer sup-port systems. Information & Management, 40 (8), 757-768, 2003.
Oliver, R. L. Whence consumer loyalty? Journal of Marketing, 63, 33-44, 1999.
Oliver, R.L. & Shor, M. Digital redemption of coupons: satisfying and dissatisfying effects of promotion codes. The Journal of Product and Brand Management, 12 (2/3), 121-134, 2003.
Parasuraman, A., Zeithaml, V.A., & Berry, L.L. SERVQUAL, a multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64 (1), 12-40, 1988.
Parasuraman, A., Zeithaml, V.A., & Malhotra, A. E-S-QUAL: a multiple-item scale for as-sessing electronic service quality. Journal of Service Research, 7 (3), 213-233, 2005.
Park, S. & Rothrock, L. Systematic analysis for framing bias in missile defense: implica-tions toward visualization design. European Journal of Operational Research, 182 (3), 1383-1398, 2007.
Perea, A. Proper belief revision and rationalizability in dynamic games. International Journal of Game Theory, 34 (4), 529-559, 2006.
Pinker, E.J., Seidmann, A., & Vakrat, Y. Managing online auctions, current auctioneer and research issues. Management Science, 49 (11), 1457-1484, 2003.
Richard, M.O. Modeling the impact of Internet atmospherics on surfer behavior. Journal of Business Research, 58 (12), 1632-1642, 2005.
Rohm, A.J. & Swaminathan, V. A typology of online shoppers based on shopping motiva-tions. Journal of Business Research, 57 (7), 748-757, 2004.
Saeed, K.A., Hwang, Y., & Yi, M.Y. Toward an integrative framework for online consumer behavior research, a meta-analysis approach. Journal of End User Computing, 15 (4), 1-26, 2003.
Senecal, S., Kalczynski, P.J., & Nantel, J. Consumers’ decision-making process and their online shopping behavior, a click stream analysis. Journal of Business Research, 58 (11), 1599-1608, 2005.
Shugan, S.M. Editorial, marketing science, models, monopoly models, and why we need them. Marketing Science, 21 (3), 223-228, 2002.
Snir, E.M. & Hitt, L.M. Costly bidding in online markets for IT services. Management Science, 49 (11), 1504-1520, 2003.
Stern, B.B. & Stafford, M.R. Individual and social determinants of winning bids in online auctions. Journal of Consumer Behavior, 5 (1), 43-55, 2006.
Suter, T.A. & Hardesty, D.M. Maximizing earnings and price fairness perceptions in online consumer-to-consumer auction. Journal of Retailing, 81 (4), 307-317, 2005.
Vragov, R. Why is eBay the king of internet auction? E-Service Journal, 3 (3), 5-28, 2005.
Walley, M.J.C. & Fortin, D.R. Behavioral outcomes from online auction, reserve price, re-serve disclosure, and initial bidding influences in the decision process. Journal of Business Research, 58 (10), 1409-1418, 2005.
Wilson A. Attitudes towards customer satisfaction measurement in the retail sector. Inter-national Journal of Market Research, 44 (2), 213-222, 2002.
Wood, C.M., Alford, B.L., Jackson, R.W., & Gilley, O.W. Can retailers get higher prices for “end-of-life” inventory through online auctions? Journal of Retailing, 81 (3), 181-190, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw