進階搜尋


 
系統識別號 U0026-0812200913412628
論文名稱(中文) 奈米金在奈米生物技術與奈米醫學上的應用
論文名稱(英文) Applications of nanogold in nanobiotechnology and nanomedicine
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 95
學期 2
出版年 96
研究生(中文) 蔡朝淵
研究生(英文) Chiau-Yuang Tsai
電子信箱 savanna_tsai@yahoo.com.tw
學號 s5891118
學位類別 博士
語文別 中文
論文頁數 71頁
口試委員 口試委員-張煥宗
召集委員-賴明德
口試委員-簡伯武
指導教授-吳昭良
口試委員-王崇任
口試委員-戴明泓
中文關鍵字 奈米粒子  抗血管新生  血管內皮細胞生長因子  Au:EGFP 奈米結合物  奈米金  膠原蛋白誘發類風濕性關節炎  奈米生物技術  奈米醫學 
英文關鍵字 nanobiotechnology  nanogold  nanoparticle  collagen-induced arthritis  nanomedicine  Au:EGFP nanoconjugates  antiangiogenesis  vascular endothelial growth factor 
學科別分類
中文摘要 我們的研究著重於奈米金粒子在奈米生物技術與奈米醫學領域上的應用。近年來,修飾硫基的單股核苷酸已被廣泛的應用在官能性金奈米架構的組合上。然而,製作一個結合直線狀、官能性雙股DNA之奈米金複合體的研究則尚未被報導出來。因此,我們使用生物酵素的策略來合成帶有硫基的雙股DNA片段,大小約為1.7 kb,並製作出新穎的奈米金-DNA晶體。根據瓊脂膠電泳與原子力顯微鏡的分析結果,我們得到一個金奈米可連結一、二或三條EGFP DNA片段的Au:EGFP奈米結合物,不僅如此,這樣的金奈米晶體上的EGFP DNA片段亦可透過限制酶的作用與在哺乳類細胞中表現活性蛋白,進而證明DNA在與金奈米共價結合後仍能保有原本之生物活性。這樣生物性製備奈米金複合體的策略在未來可應用在分子影像、奈米醫學以及奈米偵測技術上。另外,血管新生在類風濕性關節炎的病理進程中是扮演著重要的角色而奈米金具有抑制血管內皮細胞生長因子活性的功能。因此,我們也將探討奈米金在大鼠類風濕性關節炎模式中是否具有改善其臨床症狀的功能。血管內皮細胞生長因子大量地存在於病人的血清、關節液與發炎的滑液膜中。所以,奈米金可與病人關節液中的血管內皮細胞生長因子結合,進而抑制類風濕性關節炎病人的關節液所誘發之人類臍靜脈內皮細胞的增生與移動能力。我們的結果是首次證明在大鼠的膠原蛋白誘發類風濕性關節炎模式中,關節施打奈米金具有改善此疾病臨床上進程的效果。奈米金可產生抗血管新生能力,接著抑制巨噬細胞的浸潤與發炎作用,進而達到抗關節炎的效果。這些結果證明了奈米金對於類風濕性關節炎可作為新穎治療物質的原理與證據。
英文摘要 In our works, we focus on the applications of nanogold (gold nanoparticles, Au NPs) in nanobiotechnology and nanomedicine. Recently, thiolated oligonucleotides were used to assemble Au NPs into ordered functional nanostructures. However, approaches for fabricating Au:DNA conjugates by using a linear, functional, double-stranded (ds) DNA fragment that directly binds to Au NP surface have not been reported. Thus, we used a ligase-dependant strategy to synthesize a 1.7-kb, thiolated dsDNA fragment and generated novel nanocrystals by coupling it to 13-nm Au NPs. The conjugates contained Au:EGFP with EGFP:Au molar ratios of 1:1, 2:1, and 3:1, as determined by their electrophoretic mobility and AFM imaging. The Au:EGFP nanoconjugates could be digested by restriction endonuclease and expressed as functional proteins in mammalian cells, indicating the biological activities of Au NP-conjugated DNA fragments were still retained. This biological strategy for fabrication of Au:DNA conjugates may be applied to molecular imaging, nanomedicine and nanobiosensor technology. Angiogenesis plays a part in the pathogenesis of rheumatoid arthritis (RA) and nanogold inhibits the activity of an angiogenic factor, vascular endothelial growth factor (VEGF). We therefore investigated whether intraarticular delivery of nanogold ameliorated collagen-induced arthritis (CIA) in rats. The levels of VEGF are elevated in the serum, synovial fluid (SF), and inflamed synovium of RA patients. Nanogold bound to VEGF in RA SF, resulting in inhibiting RA SF-induced endothelial cell proliferation and migration. Our results are the first to demonstrate that intraarticular administration of nanogold ameliorates the clinical course of CIA in rats. Nanogold exerted antiangiogenic activities and subsequently reduced macrophage infiltration and inflammation, which resulted in attenuation of arthritis. These results demonstrate proof of principle for the use of nanogold as a novel therapeutic agent for the treatment of RA.
論文目次 考試合格證明............................................I
中文摘要................................................II
英文摘要................................................III
誌謝....................................................V
總目錄..................................................VI
圖目錄..................................................X
縮寫索引................................................XII
緒論....................................................1
一、奈米科技(nanotechnology)與其衍生之研究領域......................................................1
奈米科技是什麼?........................................1
從生物界看奈米..........................................2
奈米生物技術(nanobiotechnology).......................3
奈米醫學(nanomedicine)................................3
二、奈米金的製備、特性與應用............................4
奈米金(nanogold)的歷史................................4
奈米金的製備............................................5
奈米金的基本特性........................................6
奈米金的應用:..........................................7
(一)奈米金與DNA的結合.................................7
(二)奈米金與蛋白質的結合..............................8
三、類風濕性關節炎(rheumatoid arthritis,簡稱RA)......9
RA的特徵................................................9
RA是如何造成關節的破壞?................................9
RA的致病機轉............................................10
四、研究動機與實驗設計..................................11
材料與方法..............................................14
一、材料................................................14
(一)質體..............................................14
(二)酵素..............................................14
(三)DNA回收套組(kit..................................14
(四)寡聚核苷酸........................................14
(五)細胞株............................................15
(六)動物..............................................15
二、方法................................................16
(一)硫化雙股DNA片段(S-EGFP)的合成...................16
(二)13-nm奈米金的製備.................................16
(三)金奈米結合S-EGFP片段(Au:EGFP conjugates)的製備..17
(四)原子力顯微鏡(atomic force microscopy,簡稱AFM)影像分析....................................................17
(五)利用限制內切酶處理結合奈米金的EGFP DNA片段........18
(六)細胞培養和傳送基因................................18
(七)人類關節液檢體....................................18
(八)polyethylene glycol(PEG)-奈米金的製備...........19
(九)奈米金結合VEGF165和VEGF121的測定..................19
(十)細胞增生分析......................................20
(十一)細胞爬行遷移分析................................20
(十二)誘導CIA的老鼠模式和奈米金的傳送.................21
(十三)臨床上和X光照相技術的評估.......................21
(十四)組織切片和免疫組織染色..........................22
(十五)酵素連結免疫吸附分析法(ELISA).................22
(十六)統計分析........................................22
結果....................................................23
一、13-nm奈米金結合直線狀官能性雙股DNA的研究............23
(一)製備硫基化的(S)-EGFP DNA片段與Au:EGFP結合物的策略.23
(二)Au:EGFP接合物形成的證據...........................24
(三)Au:EGFP在原子力顯微鏡下所呈現的型態...............25
(四)連結奈米金的S-EGFP片段的生物活性..................26
二、13-nm奈米金結合血管新生因子,包括VEGF121和VEGF165,與
其在大鼠CIA模式中是否具有預防或治療疾病的研究...........27
(一)奈米金與PEG-奈米金的特徵..........................27
(二)人類RA SF中的VEGF含量測定.........................28
(三)13-nm奈米金對於VEGF的結合能力與抑制VEGF活性的能力.28
(四)13-nm奈米金可與RA SF中的VEGF相結合與抑制RA SF所誘發
的內皮細胞增生與移動能力................................29
(五)在大鼠CIA模式中,奈米金具有減少其臨床上的、X光照相上的(radiographic)與組織學上的(histologic)特徵........30
(六)奈米金在CIA大鼠的滑液膜中具降低血管新生的功能.....32
(七)奈米金在CIA大鼠的滑液膜中具降低巨噬細胞浸潤與誘發發炎反應細胞激素的功能......................................32
(八)奈米金對於CIA大鼠的治療效果.......................33
討論....................................................34
利於連接反應的設計......................................34
AFM影像所造成的奈米粒子粒徑誤差.........................34
在奈米金上的DNA生物活性.................................34
13-nm奈米金可同時結合VEGF121和VEGF165...................35
奈米金可能無法完全抑制RA SF所誘發的內皮細胞增生與爬行的能力......................................................36
奈米金在大鼠CIA模式中的療效.............................36
奈米金可抑制血管新生與發炎反應之間的自我放大效應
(autoamplification loop)..............................37
奈米金與傳統金鹽的比較:體內分布與可能的副作用..........38
奈米金結合其他治療方式的組合性治療(combination therapy)策略可能性................................................39
結論....................................................40
參考文獻................................................41
作者簡歷................................................70
參考文獻 Alivisatos,A.P., Johnsson,K.P., Peng,X., Wilson,T.E., Loweth,C.J., Bruchez,M.P., Jr., and Schultz,P.G. (1996). Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609-611.
Altman,R., Asch,E., Bloch,D., Bole,G., Borenstein,D., Brandt,K., Christy,W., Cooke,T.D., Greenwald,R., Hochberg,M., et al. (1986). Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 29, 1039-1049.
Antonii,F. (1618). Panacea Aurea-Auro Potabile; Bibliopolio Frobeniano: Hamburg.
Arnett,F.C., Edworthy,S.M., Bloch,D.A., McShane,D.J., Fries,J.F., Cooper,N.S., Healey,L.A., Kaplan,S.R., Liang,M.H., Luthra,H.S., et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315-324.
Berse,B., Hunt,J.A., Diegel,R.J., Morganelli,P., Yeo,K., Brown,F., and Fava,R.A. (1999). Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin.Exp.Immunol. 115, 176-182.
Bhattacharya,R., Mukherjee,P., Xiong,Z., Atala,A., Soker,S., and Mukhopadhyay,D. (2004). Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 4, 2479-2481.
Bottomley,M.J., Webb,N.J., Watson,C.J., Holt,P.J., Freemont,A.J., and Brenchley,P.E. (1999). Peripheral blood mononuclear cells from patients with rheumatoid arthritis spontaneously secrete vascular endothelial growth factor (VEGF): specific up-regulation by tumour necrosis factor-alpha (TNF-alpha) in synovial fluid. Clin.Exp.Immunol. 117, 171-176.
Brust,M., Schiffrin,D.J., Whyman,R.J. (1994). Synthesis of Thiol-Derivatized Gold Nanoparticles in a Twophase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 801-802.
Cao,Y.C., Jin,R., and Mirkin,C.A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536-1540.
Carvalho,J.F., Blank,M., Shoenfeld,Y. (2007) Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol. 27, 246-56.
Daniel,M.C. and Astruc,D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem.Rev. 104, 293-346.
El Sayed,I.H., Huang,X., and El Sayed,M.A. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano.Lett. 5, 829-834.
Elghanian,R., Storhoff,J.J., Mucic,R.C., Letsinger,R.L., and Mirkin,C.A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081.
Faraday,M. (1857). Experimental relations of gold (and other metals) to light. Philos. Trans. 147, 145-181.
Faulk,W.P. and Taylor,G.M. (1971). An immunocolloid method for the electron microscope. Immunochemistry 8, 1081-1083.
Fava,R.A., Olsen,N.J., Spencer-Green,G., Yeo,K.T., Yeo,T.K., Berse,B., Jackman,R.W., Senger,D.R., Dvorak,H.F., and Brown,L.F. (1994). Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J.Exp.Med. 180, 341-346.
Firestein,G.S. (2003). Evolving concepts of rheumatoid arthritis. Nature 423, 356-361.
FitzGerald,O., Soden,M., Yanni,G., Robinson,R., and Bresnihan,B. (1991). Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis. Ann.Rheum.Dis. 50, 792-796.
Flamme,I., Krieg,M., Plate,K.H. (1998). Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am J Pathol. 153, 25-9.
Folkman,J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat.Med. 1, 27-31.
Frens,G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature: Phys. Sci. 241, 20-22.
Gearheart,L.A., Ploehn,H.J., and Murphy,C.J. (2001). Oligonucleotide Adsorption to Gold Nanoparticles: A Surface-Enhanced Raman Spectroscopy Study of Intrinsically Bent DNA. J.Phys.Chem.B 105, 12609-12615.
Glynou,K., Ioannou,P.C., Christopoulos,T.K., and Syriopoulou,V. (2003). Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal.Chem. 75, 4155-4160.
Gole,A., Dash,C., Soman,C., Sainkar,S.R., Rao,M., and Sastry,M. (2001). On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug.Chem. 12, 684-690.
Grabar,K.C., Freeman,R.G., Hommer,M.B., Natan,M.J. (1995). Preparation and Characterization of Au Colloid Monolayers. Anal.Chem. 67, 735-743.
Graham,T. (1861). Philos. Trans. R. Soc. 151, 183-190.
Hainfeld,J.F., Slatkin,D.N., Smilowitz,H.M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 49, N309-N315.
He,L., Musick,M.D., Nicewarner,S.R., Salinas,F.G., Benkovic,S.J., Natan,M.J., and Keating,C.D. (2000). Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J.Am.Chem.Soc. 122, 9071-9077.
Hillyer JF, Albrecht RM. Correlative instrumental neutron activation analysis, light microscopy, transmission electron microscopy, and X-ray microanalysis for qualitative and quantitative detection of colloidal gold spheres in biological specimens. Microsc Microanal 1998;4:481-90.
Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001;90:1927-36.
Holzel,R., Gajovic-Eichelmann,N., and Bier,F.F. (2003). Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes—towards single molecule DNA nanostructures. Biosens.Bioelectron. 18, 555-564.
Hopkins,S.J., Humphreys,M., and Jayson,M.I. (1988). Cytokines in synovial fluid. I. The presence of biologically active and immunoreactive IL-1. Clin.Exp.Immunol. 72, 422-427.
Iijima,S. (1991) Helical microtubules of graphitic carbon Nature 354:56-58.
Ikeda,M., Hosoda,Y., Hirose,S., Okada,Y., and Ikeda,E. (2000). Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J.Pathol. 191, 426-433.
Jackson,J.R., Minton,J.A., Ho,M.L., Wei,N., and Winkler,J.D. (1997). Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J.Rheumatol. 24, 1253-1259.
Jiang,X., Jiang,J., Jin,Y., Wang,E., and Dong,S. (2005). Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules 6, 46-53.
Jou,I.M., Shiau,A.L., Chen,S.Y., Wang,C.R., Shieh,D.B., Tsai,C.S., and Wu,C.L. (2005). Thrombospondin 1 as an effective gene therapeutic strategy in collagen-induced arthritis. Arthritis Rheum. 52, 339-344.
Karlsson,M., Martensson,L.G., Jonsson,B.H., Carlsson,U. (2000). Adsorption of human carbonic anhydrase II variants to silica nanoparticles occur stepwise: binding is followed by successive conformational changes to a Molten-Globule-like state. Langmuir 16, 8470-8479.
Keyt,B.A., Berleau,L.T., Nguyen,H.V., Chen,H., Heinsohn,H., Vandlen,R., and Ferrara,N. (1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J.Biol.Chem. 271, 7788-7795.
Koch,A.E. (2003). Angiogenesis as a target in rheumatoid arthritis. Ann.Rheum.Dis. 62 Suppl 2, ii60-ii67.
Koch,A.E., Harlow,L.A., Haines,G.K., Amento,E.P., Unemori,E.N., Wong,W.L., Pope,R.M., and Ferrara,N. (1994). Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J.Immunol. 152, 4149-4156.
Kunckels,J. (1676). Nuetliche Observationes oder Anmerkungen von Auro und Argento Potabili; Schutzens: Hamburg.
Lee,S.S., Joo,Y.S., Kim,W.U., Min,D.J., Min,J.K., Park,S.H., Cho,C.S., and Kim,H.Y. (2001). Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin.Exp.Rheumatol. 19, 321-324.
Lewin,M., Carlesso,N., Tung,C.H., Tang,X.W., Cory,D., Scadden,D.T., and Weissleder,R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat.Biotechnol. 18, 410-414.
Lu,J., Kasama,T., Kobayashi,K., Yoda,Y., Shiozawa,F., Hanyuda,M., Negishi,M., Ide,H., and Adachi,M. (2000). Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J.Immunol. 164, 5922-5927.
Lundqvist,M., Sethson,I., Jonsson,B.H. (2004). Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20, 10639-10647.
Marti,O., Ribi,H.O., Drake,B., Albrecht,T.R., Quate,C.F., and Hansma,P.K. (1988). Atomic force microscopy of an organic monolayer. Science 239, 50-52.
McIntosh,C.M., Esposito,E.A.3., Boal,A.K., Simard,J.M., Martin,C.T., and Rotello,V.M. (2001). Inhibition of DNA Transcription Using Cationic Mixed Monolayer Protected Gold Clusters. J.Am.Chem.Soc. 123, 7626-7629.
Merchant,B. (1998). Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26, 49-59.
Mirkin,C.A., Letsinger,R.L., Mucic,R.C., and Storhoff,J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609.
Mor,F., Quintana,F.J., and Cohen,I.R. (2004). Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J.Immunol. 172, 4618-4623.
Muller-Ladner,U., Pap,T., Gay,R.E., Neidhart,M., and Gay,S. (2005). Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat.Clin.Pract.Rheumatol. 1, 102-110.
Mukherjee,P., Bhattacharya,R., Wang,P., Wang,L., Basu,S., Nagy,J.A., Atala,A., Mukhopadhyay,D., and Soker,S. (2005). Antiangiogenic properties of gold nanoparticles. Clin.Cancer Res. 11, 3530-3534.
Nagashima,M., Wauke,K., Hirano,D., Ishigami,S., Aono,H., Takai,M., Sasano,M., and Yoshino,S. (2000). Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 39, 1255-1262.
Nam,J.M., Thaxton,C.S., and Mirkin,C.A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884-1886.
Nicewarner,P., Sr., Raina,S., Goodrich,G.P., Fedoroff,N.V., and Keating,C.D. (2002). Hybridization and enzymatic extension of au nanoparticle-bound oligonucleotides. J.Am.Chem.Soc. 124, 7314-7323.
Niidome,T., Nakashima,K., Takahashi,H., and Niidome,Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem.Commun. (Camb) 1978-1979.
Niidome,T., Yamagata,M., Okamoto,Y., Akiyama,Y., Takahashi,H., Kawano,T., Katayama,Y., and Niidome,Y. (2006). PEG-modified gold nanorods with a stealth character for in vivo applications. J.Control Release 114, 343-347.
Ow Sullivan,M.M., Green,J.J., and Przybycien,T.M. (2003). Development of a novel gene delivery scaffold utilizing colloidal gold-polyethylenimine conjugates for DNA condensation. Gene Ther. 10, 1882-1890.
Paciotti,G.F., Myer,L., Weinreich,D., Goia,D., Pavel,N., McLaughlin,R.E., and Tamarkin,L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169-183.
Paleolog,E.M. (2002). Angiogenesis in rheumatoid arthritis. Arthritis Res. 4 Suppl 3 , S81-S90.
Pante,N. And Kann,M. (2002). Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol.Biol.Cell 13, 425-434.
Park,C.C., Morel,J.C., Amin,M.A., Connors,M.A., Harlow,L.A., and Koch,A.E. (2001). Evidence of IL-18 as a novel angiogenic mediator. J.Immunol. 167, 1644-1653.
Park,S.J., Taton,T.A., and Mirkin,C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503-1506.
Rosi,N.L., Giljohann,D.A., Thaxton,C.S., Lytton-Jean,A.K., Han,M.S., and Mirkin,C.A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027-1030.
Saxne,T., Palladino,M.A., Jr., Heinegard,D., Talal,N., and Wollheim,F.A. (1988). Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum. 31, 1041-1045.
Sengupta,S., Eavarone,D., Capila,I., Zhao,G., Watson,N., Kiziltepe,T., and Sasisekharan,R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568-572.
Shukla,R., Bansal,V., Chaudhary,M., Basu,A., Bhonde,R.R., and Sastry,M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644-10654.
Szekanecz,Z., Gaspar,L., and Koch,A.E. (2005). Angiogenesis in rheumatoid arthritis. Front Biosci. 10, 1739-1753.
Tischer,E., Mitchell,R., Hartman,T., Silva,M., Gospodarowicz,D., Fiddes,J.C., and Abraham,J.A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J.Biol.Chem. 266 , 11947-11954.
Tkachenko,A.G., Xie,H., Coleman,D., Glomm,W., Ryan,J., Anderson,M.F., Franzen,S., and Feldheim,D.L. (2003). Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J.Am.Chem.Soc. 125, 4700-4701.
Turkevitch,J., Stevenson,P.C., Hillier,J. (1951). Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 11, 55-75.
Vertegel,A.A., Siegel,R.W., Dordick,J.S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800-6807.
Voelkel,N.F., Vandivier,R.W., Tuder,R.M. (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol. 290, L209-21.
Wang,C.R., Chen,S.Y., Wu,C.L., Liu,M.F., Jin,Y.T., Chao,L., and Chao,J. (2005). Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum. 52, 1319-1324.
Wang,G., Zhang,J., and Murray,R.W. (2002). DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Anal.Chem. 74, 4320-4327.
Wu,X., Liu,H., Liu,J., Haley,K.N., Treadway,J.A., Larson,J.P., Ge,N., Peale,F., and Bruchez,M.P. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat.Biotechnol. 21, 41-46.
Yamashita,A., Yonemitsu,Y., Okano,S., Nakagawa,K., Nakashima,Y., Irisa,T., Iwamoto,Y., Nagai,Y., Hasegawa,M., and Sueishi,K. (2002). Fibroblast growth factor-2 determines severity of joint disease in adjuvant-induced arthritis in rats. J.Immunol. 168, 450-457.
Yoo,S.A., Bae,D.G., Ryoo,J.W., Kim,H.R., Park,G.S., Cho,C.S., Chae,C.B., and Kim,W.U. (2005). Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes. J.Immunol. 174, 5846-5855.
Yun,C.S., Khitrov,G.A., Vergona,D.E., Reich,N.O., and Strouse,G.F. (2002). Enzymatic manipulation of DNA-nanomaterial constructs. J.Am.Chem.Soc. 124, 7644-7645.
Zanchet,D., Micheel,C.M., Parak,W.J., Gerion,D., and Alivisatos,A.P. (2001). Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates. Nano Lett. 1, 32-35.
Zanchet,D., Micheel,C.M., Parak,W.J., Gerion,D., Williams,S.C., and Alivisatos,A.P. (2002). Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings. J.Phys.Chem.B 106, 11758-11763.
Zhang,M., Desai,T., and Ferrari,M. (1998). Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19, 953-960.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw