進階搜尋


 
系統識別號 U0026-0812200913403539
論文名稱(中文) 研究以各種酚醛樹脂與合成方法製作多元性之中孔洞碳材
論文名稱(英文) Synthesis of Mesoporous Carbon in Different forms by Using Various Phenol-Formaldehyde Sources and Different Synthestic methods
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 95
學期 2
出版年 96
研究生(中文) 吳勝皓
研究生(英文) Sheng-Hao Wu
電子信箱 l3694118@ccmail.ncku.edu.tw
學號 l3694118
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 口試委員-翁鴻山
指導教授-林弘萍
口試委員-鄧熙聖
中文關鍵字 酚醛樹脂  矽酸鈉  界面活性劑  碳材  中孔洞材料 
英文關鍵字 mesoporous  carbon  surfactant  phenol formaldehyde resin  silica 
學科別分類
中文摘要 利用界面活性劑模板法所合成的中孔洞材料,由於具有可改變孔
道形狀、高表面積和大孔洞體積等特性,在近十年來已受到很大的關
注。本研究主要是利用中性界面活性劑Pluronic F127和各種不同
分子量的phenol-formaldehyde(PF)共混掺當有機模板合成出介尺
度堆積規則的中孔洞碳材或矽材。藉由簡易的sol-gel方法,將F127
和PF溶於H2O/EtOH溶液中,再倒入酸性sodium silicate 水溶液,即
可合成出PF-F127-silica複合中孔洞材料。此PF-F127-silica複合
中孔洞材料經由100℃烘箱硬化和高溫爐在氮氣環境中高溫1000℃,
持溫兩小時進行碳化,利用4.8% HF移除氧化矽模板,即可得到中孔洞
碳材。

此外,可藉由改變合成因素,如: H2O/EtOH 重量比例、pH值、溫
度和不同分子量PF resins 等條件,並探討不同合成因素對中孔洞碳
材外觀和孔洞性的影響。當H2O/EtOH重量比例為0 時,可合成出顆粒
狀中孔洞碳材,提高重量比例時其外觀將由泡囊狀逐漸變成短條狀,
所合成出的中孔洞碳材具有高表面積1000–1500 m2g-1和大孔洞體積0.75–2.0 cm3g-1。

在此亦提出另一種新式方法以合成中孔洞碳材,利用高鹼性水溶
液可溶解PF resins的特性取代EtOH,快速溶解PF resins於溶液中,將溶液pH值調到pH=4.0~6.0,即可合成PF-F127-silica複合中孔洞
材料,再經由碳化與移除氧化矽則可得到中孔洞碳材,並藉由改變不
同分子量PF resins 與界面活性劑以合成出具高面積1000–2000
m2g-1、大孔洞體積和不同外觀的中孔洞碳材,此方法不僅可減少乙醇使用量還可以更快速地得到中孔洞碳材。

最後我們也嘗試以氧化鋅做為隔層物,利用溶液揮發自組合方法,可快速簡便得合成出具有高孔洞性的中孔洞碳材,並比較在不同條件下所合成碳材的差異,此方法的好處是在常溫下即可合成且氧化鋅移除較氧化矽容易。
英文摘要 In this thesis, miscible polymer blends of homo- or triblock-polymer surfactants and phenol formaldehyde resin (PF) were used as novel templates to synthesize the mesoporous silicas and carbons. The F127-PF-silica nano-composite in well-ordered hexagonal mesostructure was efficiently synthesized by mixing an ethanol/water solution of F127-PF polymer blend and a acidified sodium silicate aqueous solution. This nano-composite can be converted into mesoporous carbons via consequent processes of drying at 100oC, pyrolysis under N2 atmosphere at 1000 oC and HF-etching. Alternatively, the mesoporous silica can be obtained form calcination in air.

To explore the effects of various reaction factors on the morphology and mesostructures of the mesoporous carbons and silicas, we changed pH value of the silicate solution, H2O/EtOH ratio, and temperature, and used PF resins with different molecular weights. At EtOH/H2O ratio = 0, a well-order mesoporous carbon in a particle morphology was synthesized. As increasing the H2O/EtOH ratio, the morphology was transformed from vesicle-like particles to short nanorods. The resulted mesoporous carbons possess high surface area of 1000–1500 m2g-1 and
large porosity of 0.75–2.0 cm3g-1.

In addition, we also proposed another method to synthesize the mesoporous carbons from different PF resin and polymer surfactants by dissolving the organic compositions in a highly alkaline sodium silicate solution (pH > 11). After acidifying that gel solution to pH value around 6.0, the PF-F127-silica composite can be rapidly synthesized. Typically, this composite can also be converted into mesoporous carbons or silica as will. This method can avoid using the organic ethanolic solvent. To
extending the method, we performed PF resins in different molecular weights and various surfactants to synthesize different mesoporous carbons with high surface area (1000-2000 m2g-1), large porosity, and novel-morphology.

To avoid using the hazardous HF for silica removal, we tried to use ZnO nanoparticles as solid spacer, which could be removed by other inorganic acids, to prepare the mesoporous carbons. After solvent evaporation, a PF-P127-ZnO homogeneous composite was obtained. With a well-control on the synthetic compositions, the mesoporous
carbon of high surface are and large pore size has been conveniently synthesized after pyrolysis at 1000 oC and HCl-etching.
論文目次 第一章緒論..........................................1
1.1 中孔洞材料介紹..................................1
1.1.1 中孔洞材料的定義..............................1
1.1.2 中孔洞材料主要研究範疇........................2
1.2 界面活性劑性質簡介..............................3
1.2.1 界面活性劑的分類..............................4
1.2.2 微胞的形成....................................5
1.2.3 微胞的形狀....................................6
1.3 矽酸鹽的基本概念................................7
1.4 高分子混掺(polymer blends) ............................................10
1.4.1 聚摻的方法................................... 11
1.5 中孔洞碳材簡介..................................13
1.6 酚醛樹酯的簡介..................................16
第二章實驗部份......................................18
2.1 化學藥品........................................18
2.2 各種中孔洞碳料合成方法..........................19
2.2.1 利用高分子混掺法(polymer blending)製造中孔洞碳料之合成步驟..............................................19
2.2.2 利用高鹼水溶液方式製造中孔洞碳材之合成步驟....20
2.2.3 以ZnO當隔層合成出中孔洞碳材...................21
2.3 產物的鑑定......................................22
2.3.1 熱重分析儀(TGA ) .............................22
2.3.2 X-射線粉末繞射光譜(XRD) ......................22
2.3.3 穿透式電子顯微鏡(TEM) ........................22
2.3.4 氮氣等溫吸附/脫附測量(N2 adsorption/desorption
isotherm) ..........................................23
第三章利用高分子混掺法合成中孔洞碳材................29
3.1 研究動機與目的..................................29
3.2 實驗結果與討論..................................31
3.2.1 F127-PF2180混掺時提高水對乙醇的比例對中孔洞碳材之
影響................................................31
A. 合成條件在pH=4.0、T=40℃和矽酸鈉水溶液熟化時間:7~8
分鐘................................................31
B. 合成條件在pH=5.0、T=40℃和矽酸鈉水溶液熟化時間:7~8
分鐘................................................34
C. 合成條件在pH=4.0、T=30℃和矽酸鈉水溶液熟化時間:7~8分
鐘..................................................37
D. 合成條件在pH=5.0、T=30℃和矽酸鈉水溶液熟化時間:7~8
分鐘................................................39
3.2.2 矽酸鈉水溶液濃度對中孔洞材料的影響............42
3.2.3 F127-PF混掺(blending)時改變不同的酚醛樹脂.....45
A. 合成時利用酚醛樹脂PF416當碳源(Mw ca.4883) .......45
A-1. 合成條件在T=40℃、pH=4.0 和矽酸鈉水溶液熟化時間:7~8分鐘..................................................45
A-2. 合成條件在T=40℃和矽酸鈉水溶液熟化時間:7~8分鐘下降低酚醛樹脂用量並改變pH 值...............................49
A-2-1. 合成條件在T=40℃、pH值4.0和矽酸鈉水溶液熟化
時間:7~8分鐘下降低酚醛樹脂用量......................49
A-2-2. 合成條件在T=40℃、pH值5.0和矽酸鈉水溶液熟化
時間:7~8分鐘下降低酚醛樹脂用量......................51
A-2-3. 合成條件在T=40℃、pH值6.0和矽酸鈉水溶液熟化
時間:1分鐘下降低酚醛樹脂用量........................52
A-3. 合成條件在T=40℃、pH值5.0和矽酸鈉水溶液熟化時
間:7~8分鐘下混掺時加入酸及水........................54
B. 合成時利用酚醛樹脂PR620當碳源(Mw ca.17560) ......57
B-1. 合成條件在pH=5.0、T=40℃和矽酸鈉水溶液熟化時間:7~8分鐘..................................................57
B-2. 合成條件在pH=6.0、T=40℃和矽酸鈉水溶液熟化時間:7~8分鐘..................................................59
C. 合成時利用酚醛樹脂PF1110當碳源(Mw ca.12000) .....60
C-1. 合成條件在pH=4.0、T=40℃和矽酸鈉水溶液熟化時間:7~8分鐘..................................................61
C-2. 合成條件在pH=5.0、T=40℃和矽酸鈉水溶液熟化時
間:7~8分鐘..........................................62
第四章利用鹼性水溶液方式合成出中孔洞碳材............65
4.1 研究動機與目的..................................65
4.2 結果與討論......................................66
4.2.1 改變不同酚醛樹脂..............................66
A. 利用酚醛樹脂PR620(Mw ca.17560 g/mol)在不同pH值下合成中孔洞碳材..............................................66
A-1. 合成條件在T=40℃和pH=4.0 ......................66
A-2. 合成條件在T=40℃和pH=5.0 ......................69
A-3. 合成條件在T=40℃和pH=6.0 ......................71
B. 利用酚醛樹脂PF4161(Mw ca.4883 g/mol)在不同pH值下合
成中孔洞碳材........................................72
B-1. 合成條件在T=40℃和pH=4.0 ......................72
B-2. 合成條件在T=40℃和pH=5.0 ......................75
C. 利用酚醛樹脂PF1110(Mw ca.g/mol)在不同pH 值下合成中
孔洞碳材............................................77
C-1 合成條件在T=40℃和pH=4.0 .............................................77
C-2 合成條件在T=40℃和pH=5.0 .............................................79
D. 利用酚醛樹脂PF2180(Mw ca.96000 g/mol)在pH 值5.0下
合成中孔洞碳材......................................80
E. 高鹼水溶液方式之合成機制.........................84
4.2.2 改變不同界面活性劑............................85
A. 利用酚醛樹脂PF2180和不同界面活性劑在溫度40℃且pH
值5.0下合成中孔洞碳材...............................86
B. 利用酚醛樹脂PR620和不同界面活性劑在溫度40℃且pH值
5.0下合成中孔洞碳材.................................88
C. 合成條件在T=40℃和pH值5.0下,利用PEO300,000做為界
面活性劑並改變不同的酚醛樹脂PF2180用量合成中孔洞碳材
....................................................91
第五章以氧化鋅當隔層合成中孔洞碳材..................................................94
5.1 研究動機與目的..................................94
5.2 結果與討論......................................94
5.2.1 合成時改變不同隔層物-氧化鋅含量...............94
5.2.2 合成時添加不同的水含量和提高酚醛樹脂量........96
5.2.3 添加氧化鋅後調控pH值至4.0和5.0並改變不同水含量
....................................................97
5.2.4 先添加氧化鋅後再調控pH值......................99
第六章結論.........................................104
參考文獻.......................................... 106
參考文獻 1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
Nature, 1992,359, 710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,
K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.
Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
4. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
5. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
6. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
7. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung,
P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
8. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem.
Commun., 1995, 1617.
9. A. Sayari, Chem. Mater., 1996, 8, 1840.
10. R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
11. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994,
39, 63.
12. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
13. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf.
Sci. Catal., 1994, 84, 69.
14. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
15. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1,
Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 578.
16. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou
and D. Zhao. Angew. Chem., 2003, 115 , 3254.
17. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon.
J. Meter. Chem, 2002, 12, 3533.
18. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15,
1385.
19. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49,
981.20. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
21. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
22. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8,
1147.
23. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby,
J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
24. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki,
S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
25. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y.
Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am.
Chem. Soc., 2001, 123, 5014.
26. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
27. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. ,
2002, 14, 1144.
28. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and
Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
29. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S.
Lin.J. Phys. Chem. B., 2001, 105, 7963
30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G.
D.Stukey. Chem. Mater., 2002, 12, 2448.
31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15,
2161.
32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 ,
951.
33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. ,
2000, 48, 289.
34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem.
Int. Ed. 2003, 42, 413.
36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
37. S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
38. N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
39. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes,
Angew. Chem. Int. Ed., 2002, 41, 1543 .
40. T. F. Todros, Surfactants, Academic Press : London, 1984.
41. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation
in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.42. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980,
13, 121.
43. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II.,
1981, 77, 1264
44. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
45. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E.
Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D.
Stukey .Chem. Mater., 1994, 6, 1176.
46. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids,
1985, 70, 301
47. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
Dekker, New York 1988.
48. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
49. T. Kyotani, Carbon 2000, 38, 269.
50. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun.
1998, 2177.
51. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N.
Toyota, Synthetic Metals, 2003, 721.
52. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater.,
2003, 15, 2107
53. T. Kyotani, Carbon 2000, 38, 269.
54. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem.
Mater.,1996, 8, 454.
55. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
56. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
57. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
58. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146,
3639.
59. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita,
Chem. Mater., 2000, 12, 3397.
60. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.;
Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
61. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9,
609.
62. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
63. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
64. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G.
Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.65. [70] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.;
Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
66. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003,
107, 2205.
67. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002,
106, 4640.
68. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,
No. 9, 677.
69. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna
and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
70. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003,
15, 2815
71. Harriott, P.; Chang, A. T. Y. (1988) Kinetics of spent activated
carbon regeneration. AICHE Journal,Vol.34, pp.1656~662.
72. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a
theory of the van der waals adsorption of gases”, J. Am. Chem. Soc.,
62, 1723(1940)
73. G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of
Heterogeneous Catalysis”, vol 3,VCHD-69451 Weinheim, p.1508
(1997).
74. J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang, and Y. Lu, Adv.
Mater. 2004, 16, No. 11, 884.
75. V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A.
Mun, Langmuir 2004, 20, 3785.
76. S. Kuo, C. Lin, and F. Chang, Macromolecules 2002, 35, 278.
77. Hong-Ping Lin, Chun-Yi Chang-Chien, Chih-Yuan Tang, Ching-Yen
Lin, 2006 “Synthesis of p6mm hexagonal mesoporous carbons and
silicas using Pluronic F127-PF resin polymer blends”
MICROPOROUS AND MESOPOROUS MATERIALS, 93, 344-348.
78. Chun-Han Hsu, Hong-Ping Lin, Chin-Yuan Tang and Ching-Yen Lin,
2006 “Synthesis of mesoporous silicas with different pore sizes using
PEO polymers via hydrothermal treatment: A direct template for
mesoporous carbon” Materials Chemistry and Physics, 100, 112-116.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw