進階搜尋


 
系統識別號 U0026-0812200913371366
論文名稱(中文) 具有濕度自動修正功能的新型超音波空氣溫度測量系統之設計
論文名稱(英文) Design of An Ultrasonic Air Temperature Measurement System with Self-Correction Function for Humidity
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 95
學期 2
出版年 96
研究生(中文) 蔡文元
研究生(英文) Wen-Yuan Tsai
電子信箱 wytsai@cc.kyu.edu.tw
學號 n9892103
學位類別 博士
語文別 英文
論文頁數 68頁
口試委員 口試委員-林嘉宏
口試委員-陳振聲
指導教授-廖德祿
召集委員-陳添智
口試委員-楊證富
中文關鍵字 多頻率連續波  飛行時間法  相位差法  雙頻率調制波  環境濕度修正  超音波溫度測量系統 
英文關鍵字 phase shift method  time-of-flight method  multiple-frequency continuous wave  binary frequency shift-keyed  correction for environment humidity  ultrasonic air temperature measurement system 
學科別分類
中文摘要 本論文使用具有環境濕度修正功能的高精確度超音波系統來測量空氣中的平均溫度。此系統由一對40kHz的超音波傳送器組成,採用單一方向的操作模式,即一個傳送器為發射,另一個傳送器為接收。首先介紹的是環境對音波速度的影響,包括溫度對音速的影響、濕度對音速的影響、溫度和溼度對音速的綜合影響,以及修正方法。此系統是藉著測量空氣中的音速變化來計算空氣中的平均溫度,但因聲波的傳播速度易受到環境濕度的影響,使得空氣溫度測量的準確度降低。因此若要得到高精確度的空氣溫度測量,必須依照不同的環境濕度來作修正,所以本論文利用此修正方法配合超音波溫度測量系統設計出在任何環境濕度下皆能有高精確度的溫度測量。
超音波使用的技術是飛行時間和相位差兩種方法的結合,採用的音波是雙頻率調制波,這種超音波技術是一種高效率的演算法,兼具飛行時間法和相位差法兩者的優點,可得到比飛行時間法更準確及比相位差法距離更遠的溫度測量。此外本論文也提出了多頻率連續波的超音波空氣溫度測量技術,此技術主要是使用三個不同但是頻率很接近的超音波,在超音波發射器與接收器是固定距離的條件下分別得到三個不同的相位差來完成溫度測量,此方法比單頻率連續波具有更大的測量範圍。
本溫度量測系統利用單晶片微電腦為基礎,配合溼度/水蒸氣壓力計,設計雙頻率調制波、多頻率連續波的產生器,頻率檢測器、數位相位計,來記錄飛行時間和相位差的資料,並計算出溫度值,最後將測量的溫度顯示在LCD或PC上,PC只用於系統校正。實驗是在恆溫恆濕箱的空氣中進行以40kHz及42kHz為調制頻率,解析度為0.05%,實驗的空氣傳播路徑長度為100公分,可得到±0.4 ℃的準確度,此超音波溫度測量系統的主要優點為高解析度,使用低成本窄頻寬的超音波傳送器,並且容易實現與操作。
英文摘要 This dissertation will present an ultrasonic air temperature measurement system with self-correction function for humidity. This highly accurate system can measure the average air temperature. This system consists of a pair of 40kHz ultrasonic transducers with single-pass operation. That is one transducer used as transmitter and the other as receiver. First we will discuss the effect to sound speed by environmental elements including temperature, humidity and the combination of temperature and humidity and their correction methods. This system calculates the average air temperature by the changes of sound speed in the air. But because the propagation speed of ultrasonic wave can be easily effected by humidity, the accuracy of the air temperature measurement system will be effected too. Therefore to achieve high accuracy in measurement, correction will be needed according to different environment humidity. This dissertation will implement the ultrasonic air temperature measurement system with humidity correction suitable for all kinds environment humidity and this measurement system will achieve high accuracy.
We use the combination of the ultrasonic techniques of time-of-flight and phase shift. The ultrasonic wave that we adopt here is binary frequency shift-keyed(BFSK). This type of ultrasonic technique is a highly efficient algorithm with the advantages of both time-of-flight method and phase shift method with which we can get higher accuracy compared with the time-of-flight method and larger range measurement than the phase shift method.
In addition, this dissertation will propose the technique of ultrasonic air temperature measurement with multiple-frequency continuous wave(MFCW). This technique makes use of three continuous ultrasonic wave of different but closely-spaced frequencies and under the condition of constant distance between transmitter and receiver three different phase shift can be acquired to measure the temperature. This technique can be applied to larger range of measurement than single-frequency continuous wave. This temperature measurement system is single-chip microcomputer-based with a relative humidity/water vapour pressure meter, generators of binary frequency shift-keyed wave and multiple-frequency continuous wave, a frequency detector, and a digital phase meter to record the data of time-of-flight and phase shift and to calculate the temperature measured. Eventually the measured temperature will be displayed on LCD or PC. PC is necessary only for calibration of the system. Experiments are conducted in a temperature/humidity-controlled chamber using BFSK with the frequencies of 40 and 42 kHz. Resolution is 0.05% and the length of air propagation path is 100 cm. The error of the measurement is ±0.4 ℃. The main advantages of this ultrasonic temperature measurement system are high resolution, using narrow-bandwidth ultrasonic transducer of low cost and and ease of implementation.
論文目次 ABSTRACT
LIST OF TABLES
LIST OF FIGURES
CHAPTER 1 INTRODUCTION……………………...…………….…1
CHAPTER 2 METHODS………………………………….…..……….9
2.1 TEMPERATURE EFFECT ON THE SPEED OF SOUND……...9
2.2 METHOD OF THE HUMIDITY CORRECTION…………...…13
2.3 METHOD OF THE TEMPERATURE MEASUREMENT…….18
2.3.1 The ultrasonic phase-shift method……………………………...18
2.3.2 Combing the time of flight and phase shift…………………….22
2.3.2.1 TOF calculation………………………………………………...22
2.3.2.2 Phase shift detection………………………………………...…23
2.3.3 Temperature calculation…………………………………...……26
2.4 MULTI-FREQUENCY CONTINUOUS WAVE…………………28
CHAPTER 3 DESIGN OF THE TEMPERATURE MEASUREMENT SYSTEM……………………...33
3.1 DESIGN OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM WITH SELF-CORRECTION FUNCTION FOR HUMIDITY………………………………….33
3.1.1 Hardware design…………………………………………………34
3.1.1.1 Transmitted signal source……………………………………..35
3.1.1.2 The preamplifier and the gain-controlled amplifier………....36
3.1.1.3 Frequency detector…………………………………………….37
3.1.1.4 Digital phase meter………………………………………….…38
3.1.1.5 89c51 single-chip microprocessor…………………………..…40
3.1.1.6 The calibration system………………………………………...40
3.1.2 Software design…………………………………………………..41
3.2 DESIGN OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM USING MULTI-FREQUENCY CONTINUOUS WAVE…………………………………………...43
3.2.1 Hardware design…………………………………………...…….43
3.2.1.1 Multi-frequency ultrasound source…………………………...44
3.2.1.2 Preamplifier and gain-controlled amplifier………………….45
3.2.1.3 Digital phase meter……………………………………….……45
3.2.1.4 89c51 single-chip microprocessor…………………………..…46
3.2.1.5 Calibration system………………………………………..……47
3.2.2 Software design…………………………………………………..47
CHAPTER 4 EXPERIMENTAL RESULTS…..………………..……49
4.1 TEST OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM WITH SELF-CORRECTION FUNCTION FOR HUMIDITY……………………………...……49
4.1.1 Experimental method……………………………………………49
4.1.2 Results……………………………………………………….……50
4.2 TEST OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM USING MULTI-FREQUENCY CONTINUOUS WAVE………....55
4.2.1 Experimental method………………………………………...….55
4.2.2 Results…………………………………………………………….56
CHAPTER 5 DISCUSSIONS……………………………..…….…….60
5.1 DISCUSSION OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM WITH SELF-CORRECTION FUNCTION FOR HUMIDITY……………………………….....60
5.2 DISCUSSION OF THE ULTRASONIC AIR TEMPERATURE MEASUREMENT SYSTEM USING MULTI-FREQUENCY CONTINUOUS WAVE……………………………………...……61
CHAPTER 6 CONCLUSIONS AND FUTURE DEVELOPMENT..63
REFERENCES………………………………………………………...65
參考文獻 [1] T. Han, L. Huang, S. Kelly, C. Huizenga and Z. Hui, “Virtual thermal comfort engineering” SAE Paper 2001-01-0588 SAE World Congress, Detroit,2001.
[2] J. Butkus, L. Jakevicius, “Investigation of stability of ultrasonic system for gas flow velocity measurement” Ultragarsas, Vol.40 No.3, pp.36,2001.
[3] P. Rothwell, “Sound propagation in the lower atmosphere.” J. Acoust. Soc. Am.,19, pp. 205-221,1956.
[4] M. S. Young and Y. C. Li, “A high precision ultrasonic system for vibration measurements.” Rev. Sci. Instrum., 63(11), pp.5435-5441, 1992.
[5] F. Figueroa and E. Barbieri, “An ultrasonic ranging system for structural vibration measurements.” IEEE Trans. on Instrumentation and Measurement, Vol. 40, pp.764-769, 1991.
[6] G. Tardajos, G.G. Gaitano, and F.R.M. de Espinosa, “Accurate, sensitive, and fully automatic method to measure sound velocity and attenuation.” American Institute of Physics, Rev. Sci. Instrum., Vol. 65, No. 9, pp.2933, 1994.
[7] J. M. Martin et at., “Ultrasonic ranging.” Sensor Review, vol. 12, pp.17-21, 1992.
[8] M. Parrilla, J. J. Anaya, and C. Fritsch, “Digital signal processing techniques for high accuracy ultrasonic range measurements.” IEEE Trans. Instrum. Meas., vol. 40, pp. 759-763, 1991.
[9] R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound’ IEEE Trans. On Biomedical Engineering, Vol. 42, No. 8, pp. 828-839, 1995.
[10] O. B. Matar, et al., “Noncontact measurement of vibration using airborne ultrasound.” IEEE trans. On ultrasonics, ferroelectrics, and frequency control, vol. 45, pp.626~633, 1998.
[11] T. Han, D. Lambert, L. Oberdier, D. Partin, M. Sultan, “Ultrasonic air temperature sensing for automatic climate control-vehicle test. ” SAE Paper 2004-01-1375. (SAE World Congress, Detroit)
[12] M. Bramanti, et al., “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers.” IEEE Trans. Instrum. Meas., vo l. 45, pp.159-167, 1996.
[13] D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing. ” IEEE Trans. on Instrumentation and Measurement. Vol. 43, No.4, pp.578-582, 1994.
[14] K. N. Huang, C. F. Huang and Y. C. Li, “High precision, fastultrasonic thermometer based on measurement of the speed of sound in air” American Institute of Physics, Rev. Sci. Instrum., Vol. 73, 4022-4027,2002.
[15] F. E. Gueuning, et al., “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods.” IEEE Trans. Instrum. Meas., vol. 46, pp.1236-1240, 1997.
[16] D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing.” IEEE Trans. Instrum. Meas., vol. 43, pp. 578-582, 1994.
[17] W. Y. Tsai, C. F. Huang and T. L. Liao, “New implementation of high-precision and instant-response air thermometer by ultrasonic sensors.” Sens.Actuators A , Vol.117, pp. 88-94,2005.
[18] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors.” IEEE Trans. Instrum. Meas., vol. 41, pp.93-97, Feb. 1992.
[19] G. S. K. Wong, “Speed of sound in standard air.” J. Acoust. Soc. Am., Vol. 79, No. 5,pp.1359-1366, 1986.
[20] K. D. Wilson and W. T. Dennis, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am., Vol. 96, pp.1080-1095,1994.
[21] S. K. Jeng and C. H. Liu, “Wave propagation in media with three-dimensional quadratic refractive index profile.” J. Acoust. Soc. Am., Vol. 81, No. 6, pp.1732-1739, 1987.
[22] G. S. K. Wong and T. F. W. Embleton, “Variation of the speed of sound in air with humidity and temperature.” J. Acoust. Soc. Am., Vol. 77, No. 5, pp.1710-1711, 1985.
[23] T. L. Liao, W. Y. Tsai and C. F. Huang,“A new ultrasonic temperature measurement system for air conditioners in automobiles.”Institute of Physics, Meas. Sci. Technol., Vol.15, 413-419,2004.
[24] E. W. Lemmon, M. O. McLinden and D. G. Friend, “Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69.” edited by Mallard W G and Linstrom P J, Feb. 2000,National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
[25] D. R. Lide 1995 CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Florida).
[26] CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, FL, 1986).
[27] A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (McGraw-Hill, New York, 1981).
[28] W. Y. Tsai, H. C. Chen and T. L. Liao, “An ultrasonic air temperature measurement system with self-correction function for humidity.” Measurement Science & Technology, vol. 16, no. 2, pp. 548-555, 2005.
[29] S. S. Huang, C. F. Huang, K. N. Huang, and M. S. Young, “ A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detect”, American Institute of Physics, Rev. Sic. Instrum., Vol. 73, No.10, pp.3671-3677, 2002.
[30] T. Kimura, S. Wadaka, K. Misu, T. Nagatsuka, T. Tajime, and M. Koike, “A high resolution ultrasonic range measurement method using double frequencies and phase detection” ,IEEE Ultrasonic Symposium,pp.737-741, 1995.
[31] M. Yang, H. B. Bury, and J. O. Gray, “A multifrequency AM-based ultrasonic system for accuracy distance measurement” IEEE Trans. On Instrumentation and Measurement. Vol.43, No.6, pp.861-866, 1994.
[32] C. F. Huang, M. S. Young and Y. C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement.” American Institute of Physics, Rev. Sci. Instrum., Vol. 70, No. 2,pp.1452-1458, 1999.
[33] M. Gilles, B. Eric and F. Laurent, “Local measurement validation for an intelligent chirped-FM ultrasonic range sensor.” IEEE Trans. On Instrumentation and Measurement. vol. 49, pp. 835-839, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-05-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-05-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw