進階搜尋


 
系統識別號 U0026-0812200913360662
論文名稱(中文) 應用於超寬頻之單脈波產生器及接收器模組與寬頻雙平衡混頻器之研製
論文名稱(英文) Implementation of Monocycle Pulse Generator and Receiver Module for UWB Applications and Broadband Doubly Balanced Mixer
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 1
出版年 96
研究生(中文) 莊宏智
研究生(英文) Hung-Chih Chuang
電子信箱 v1693104@mail.ncku.edu.tw
學號 v1693104
學位類別 碩士
語文別 英文
論文頁數 82頁
口試委員 口試委員-盧春林
口試委員-王瑞祿
口試委員-邱瑞杰
召集委員-洪茂峰
指導教授-王永和
中文關鍵字 單脈波產生器  單石微波積體電路  超寬頻  混頻器  接收機  互補式金氧半 
英文關鍵字 UWB  Mixer  CMOS  MMIC  Pulse Generator  Receiver 
學科別分類
中文摘要 本論文分為三大部分,第一部分研究應用在超寬頻系統之單脈波產生器,本次設計作為昇頻基礎的單脈波產生器,其所產生的單脈波使其在頻域上產生極大的頻寬,可涵蓋較高的頻段。極小化的結構,使其易於與系統整合,使超寬頻系統可朝向高度整合小型化的目標。將以往必須由步復式二極體所產生較複雜的電路,改用簡單化的RC電路直接產生單脈波,大幅減小電路之面積。由實驗結果在700-ps的脈波寬度0.5 V振幅量測,得到具有良好對稱性波形的單脈波。

第二部分為利用RO4003C基板去實現超寬頻系統接收器模組,共包含濾波器、低雜訊放大器及解調器三個模組。在帶通濾波器部分,插入損耗為0.8 dB,輸入返回損耗達13 dB;在低雜訊放大器部份,在操作頻帶內電路增益為27 dB,雜訊指數小於2 dB;在解調器中的混頻器部分,於操作頻帶內轉換損耗為19 dB,本振埠及射頻埠對中頻埠的隔離度皆大於46 dB。最後將接收器模組作整測,量測得其IQ振幅不平衡度為10 mV及相位差為99度。

第三部分是將傳統環形雙平衡混頻器,在設計中利用改良之環形Marchand balun 設計之環形雙平衡混頻器,相較以往常用的混頻器結構,本文提出環形Marchand balun 電路架構及IF 直接取出電路,此電路架構使得佈局更為簡潔,無須使用低通濾波器以及其它的電路,就可將IF 訊號可直接取出。大幅減小電路之使用面積。由模擬結果顯示,其轉換損失為11 dB,各端隔離度皆大於11 dB。
英文摘要 This thesis consists of three parts. For the first part, a simple topology CMOS monocycle pulse generator is implemented for UWB system. Compared to the previous monocycle pulse generators, the circuit is designed with two equivalent simple RC circuits as differentiators to generate the monocycle pulse directly without complex circuits. An ultra-short monocycle pulse with 700-ps pulse width and 0.5-V peak-to-peak amplitude with good symmetry of 93%, ringing level of 3.5% and balance between the positive and negative half-cycle has been demonstrated.

The second part describes the development of a receiver with RO4003C for UWB applications. It includes filter, low noise amplifier and demodulator module. The measured results of the filter show that the insertion loss is 0.8 dB and input return loss is 13 dB. The measured results of the LNA show that the gain is 27 dB and the noise figure is smaller than 2 dB. The measured results of the mixer of demodulator show that the conversion gain is -19 dB and the isolation between LO and IF or RF and IF is large than 46 dB. Finally, the measured 10 mV amplitude imbalance between I and Q signals and 99o phase difference are represented with all modules.

The third part is the mixer with multiple coupled line ring Marchand balun which can capture the signal easily from the opposite side and increase more efficiency in the area by semi-including the ring-diodes. The fourfold coupled line forming out of phase can not only filter out the signal from RF to IF but also lead out the IF signal. The conversion loss is less than 11 dB. The all port-to-port isolation is greater than 11 dB.
論文目次 摘要.....................................................I
Abstract.................................................II
Acknowledgments .........................................III
Table of Contents........................................V
List of Tables ..........................................VII
List of Figures..........................................VIII
Chapter 1 Introduction...................................1
1.1 Overview of Wireless Communication System ...........1
1.2 Development of Mixers................................4
1.3 Motivation ..........................................4
1.4 Thesis Outline.......................................5
Chapter 2 Preliminaries .................................7
2.1 Introduction ........................................7
2.1.1 Definition of UWB..................................8
2.2 UWB Transceiver Architectures........................8
2.2.1 The Impulse System of UWB .........................8
2.2.2 The MB-OFDM System of UWB .........................10
2.2.3 The DS-CDMA System of UWB..........................13
2.3 Receiver Architectures ..............................16
2.3.1 Heterodyne Receivers ..............................16
2.3.2 Homodyne Receivers ................................18
Chapter 3 Design of a Monocycle Pulse Generator .........23
3.1 Introduction ........................................23
3.2 Circuit Description and Design.......................24
3.3 Measurement Results .................................28
3.4 Discussion ..........................................34
Chapter 4 UWB MB-OFDM Receiver...........................35
4.1 Introduction ........................................35
4.2 Basic Parameters ....................................36
4.2.1 System Noise.......................................38
4.2.2 Dynamic range and 1dB compression point ...........40
4.2.3 Intermodulation products ..........................41
4.3 UWB MB-OFDM Receiver Design..........................43
4.3.1 UWB BPF............................................44
4.3.2 UWB LNA ...........................................47
4.3.3 UWB QPSK Demodulator ..............................50
4.3.3.1 APDP Even-harmonic Mixer.........................52
4.3.3.2 QPSK Demodulator Performance ....................56
4.4 Receiver Measurement.................................58
4.5 Discussion ..........................................60
Chapter 5 Design of a Diode-ring Doubly Balanced Mixer ..61
5.1 Introduction ........................................61
5.2 Doubly Balanced Mixer Theorem........................61
5.3 Basic Parameters ....................................64
5.3.1 Conversion Gain....................................64
5.3.2 Isolation .........................................65
5.4 Design and layout....................................66
5.5 Simulation ..........................................70
5.6 Discussion ..........................................74
Chapter 6 Conclusions....................................77
6.1 Conclusions .........................................77
6.2 Future Works ........................................78
References ..............................................79
Vita.....................................................82
參考文獻 [1] J. H. Reed, An Introduction to Ultra Wideband Communication Systems, Prentice Hall PTR, 2005.
[2] Agilent Ultra-wideband Communication RF Measurements, Application Note 1488, Agilent Technologies, 2005.
[3] K. Siwiak and D. McKeown, Ultra-wideband Radio Technology, John Wiley, 2004.
[4] M. Ghavami, L. B. Michael and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, John Wiley, 2004.
[5] I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley, 2004.
[6] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[7] J. Han and C. Nguyen, “A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing,” IEEE Microwave and Wireless Compon. lett., vol. 12, no. 6, pp. 206-208, June 2002
[8] R. A. Scholtz and M. Z. Win, “Impulse radio: how it works,” IEEE Communications lett. vol. 2, no. 1, pp. 10-12, Jan. 1998.
[9] J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-shortpulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microwave and Wireless Compon. lett., vol. 11, no. 5, pp. 208-210, May 2001.
[10] H. Kim, D. Park and Y. Joo, “Design of CMOS Scholtz's monocycle pulse generator,” 2003 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 80-85, Nov. 2003.
[11] X. Chen, and S. Kiaei, "Monocycle shapes for ultra wideband system," IEEE Int. Symp. on Circuits and Systems ISCAS 2002, pp. I597-I600, Aug. 2002.
[12] Y. H. Choi, “Gated UWB pulse signal generation,” Joint with Conference on Ultrawideband Systems and Technologies, Joint UWBST & IWUWBS. pp. 122-124, May 2004.
[13] J. C. Liu, S. T. Lu, C. Y. Wu, C. Y. Liu and M. H. Chiang, "Modified pulse shaper design with picosecond duration and wideband response for UWB applications," Microwave and Optical Technology lett., vol. 48, no. 4, pp. 744-749, April 2006.
[14] U.L. Rhode and D. P. Newkirk, RF/Microwave Circuit Design For Wireless Apllications, John Wiley, 2000.
[15] K. Chang, I. Bahl and V. Nair, RF and Microwave Circuit and Component Design for Wireless Systems, John Wiley, 2001.
[16] L. Besser and R. Gilmore, Practical RF Circuit Design for Modern Wireless Systems, vol. I Passive Circuits and Systems, Artech House, 2003.
[17] D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley, 1998.
[18] J. Lee, Y. J. Park, M. Kim, C. Yoon, J. Kim and K. H. Kim, "System-on-package ultra-wideband transmitter using CMOS impulse generator," Microwave Theory and Techniques, IEEE Transactions, vol. 54, no. 4, pp. 1667-1674, June 2006
[19] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall PTR, 1996.
[20] N. C. Karmakar, "A QPSK Direct-Conversion Receiver for Wireless Communications," Wiley Periodicals, Inc. Int. J RF and Microwave CAE 15, pp. 31–43, 2005.
[21] J. Laskar, B. Matinpour and S. Chakraborty, Modern Receiver Front Ends Systems Circuits and Integration, John Wiley, 2004.
[22] M. M. Radmanesh, Radio Frequency and Microwave Electroniscs Illustrated, Prentice Hall PTR, 2001.
[23] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA. Artech House, 1993
[24] S.A. Maas and K. W. Chang, "A broadband, planar, doubly balanced monolithic Ka-band diode mixer,“ Microwave Theory and Techniques, IEEE Transactions. pp. 2330-2335, Dec. 1993.
[25] J.L. Chen, S.F. Chang and B.Y. Laue, “A 20-40 GHz monolithic doubly-balanced mixer using modified planar Marchand baluns,” Microwave Conference Asia-Pacific, pp. 131-134, Dec. 2001.
[26] M. Yu, R. H. Walden, A. E. Schmitz and M. Lui "Ka/Q-band doubly balanced MMIC mixers with low LO power,“ 2000 IEEE Microwave and Guided Wave lett., pp. 424-426, Oct. 2000.
[27] S.A. Maas, F.M. Yamada, A.K. Oki, N. Matovelle and C.Hochuli,“ An 18-40 GHz Monolithic Ring Mixer”, 1998 RFIC Symposium Digest, pp. 29-32. June 1998.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-02-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-02-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw