進階搜尋


 
系統識別號 U0026-0812200913355339
論文名稱(中文) 懸吊重量與跑步機速度對腦性麻痺兒童步態參數的影響
論文名稱(英文) The Effects of Body Weight Supports and Treadmill Speeds on Gait Parameters in Children with Cerebral Palsy
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 95
學期 1
出版年 96
研究生(中文) 郭雅芳
研究生(英文) Ya-Fang Kuo
電子信箱 e2202333@hotmail.com
學號 t6693110
學位類別 碩士
語文別 中文
論文頁數 56頁
口試委員 指導教授-成戎珠
口試委員-蘇芳慶
口試委員-陳振宇
口試委員-官大紳
中文關鍵字 腦性麻痺  跑步機  步態  懸吊重量 
英文關鍵字 Gait  Cerebral palsy  Treadmill  Body weight support 
學科別分類
中文摘要 背景與目的:大部分腦性麻痺兒童的家長或治療師對於患童能達到功能性行走能力可說是首要目標。近年來,臨床上已開始採用跑步機合併懸吊系統來訓練腦性麻痺兒童。然而懸吊重量及跑步機速度的控制,多是依據治療師對患童能力的主觀認定而調整,並無特定的標準。有關合併不同懸吊重量與跑步機速度對腦性麻痺兒童影響,相關的文獻非常有限。因此,本實驗主要目的是探討懸吊重量及跑步機速度對於腦性麻痺兒童步態參數、地面反作用力和下肢對稱性(ASI)的影響。方法:本實驗共完成12位(8男,4女)6到12歲(8.9 ± 1.9歲)痙攣型的腦性麻痺患童,以及14位(9男,5女)年齡相仿(9.1 ± 1.6歲)的正常發展兒童。實驗之測試使用Kistler Gaitway跑步機擷取時間與空間上步態參數和力板反作用力資料。每位受試者皆完成12種情境,包含四種懸吊重量(體重的0 %、10 %、20 %、30 %)和三種跑步機速度(快速:130 %的舒適速度;中速:100 %的自選舒適速度;慢速:70 %的舒適速度)。統計分析採用重複測量變異數分析檢定組別、懸吊重量及跑步機速度對步態參數和下肢對稱性(ASI)之效應。結果:步頻、步長、步態週期、單腳站立期(%)與步長、單腳站立期(%)、第一極大值和第二極大值的對稱性(ASI)在組別上有統計顯著差異(p<0.05)。隨著懸吊重量的增加,除了單腳站立期隨之增加,站立期、垂直地面反作用力之第一和第二極大值則隨之減少。跑步機速度增加,除了站立期和步態週期隨之減少,步頻、步長和單腳站立期(%)則隨之增加。時間與空間上步態參數的對稱性,顯示跑步機速度快速,及懸吊重量為體重之10 %或20 %,腦性麻痺兒童之步態參數的對稱性較高。結論:懸吊重量及跑步機速度分別對於不同的步態參數具影響效度。力板反作用力之第一和第二極大值受懸吊重量影響;步頻和步長易受跑步機速度影響;此外,單腳站立期和站立期皆受到懸吊百分比和跑步機速度的影響。在跑步機速度快速,及懸吊重量10 %或20 %等參數設定下,腦性麻痺兒童有較好的下肢對稱性,且此與正常發展兒童的差異較少。由此結果可知,或許此參數可作為日後步態訓練的參考。
英文摘要 Background and Purpose: For most parents or physical therapists, the primary aim of therapy to children with cerebral palsy (CP) is functional ambulation. In recent years, the treadmill training with body weight support (TTBWS) has been applied to children with CP. However, the criteria for setting the suspension weight are either undocumented, or based on experimenter’s subjective observation of the subject’s performance. The ultimate suspension weight is unknown. Treadmill speed (TS) is another important parameter involved in gait training. Limited reports have examined the effect of different combinations of BWS and TS on gait in children with CP. Therefore the purpose of this study was to quantitatively analyze the effect of BWS and TS on gait parameters, ground reaction force (GRF) and lower extremity symmetry (ASI) in children with CP. Methods: Twelve 6-12 years old children with spastic CP (7 boys and 5 girls; 8.9 ± 1.9 years ) and fourteen normal children with comparable age (9 boys and 5 girls; 9.1 ± 1.6 years) participated in the study. Spatiotemporal parameters and GRF data of force plate were collected with the Kistler Gaitway Treadmill System. Participants performed 12 conditions with a combination of 4 BWS (0, 10, 20, and 30 % of body weight) and 3 TS (fast: 130% of preferred speed, preferred: 100 % of self-selected speed, slow: 70 % of preferred speed). Repeated measure ANOVA (p<0.05) was used to compare the effects of Group, BWS and TS on gait parameters and ASI. Results: The cadence, stride length, gait cycle, single limb support (SLS, %) as well as ASI of stride length, SLS (%), 1st and 2nd peak force were significantly different between children with CP and normal children (p<0.05). Independent from the TS, the SLS (% ) was statistically increasing while the stance phase, 1st and 2nd peak force were significantly decreasing by increasing the BWS (p<0.05). Furthermore, independent from the BWS, the stance phase and gait cycle were significantly decreasing, whereas the cadence, stride length and SLS (%) were significantly increasing by increasing the TS (p<0.05). The ASI of gait spatiotemporal parameters of children with CP was significantly symmetrical in the fast TS and the 10 % or 20 % of the BWS (p<0.05). Conclusions: BWS and TS had significant effect on different gait parameters. 1st and 2nd peak force were sensitive to the change of the BWS. Cadence and stride length were sensitive to the change of the TS. The SLS (%) and the stance phase were sensitive to both changes of the BWS and the TS. At the conditions of the fast TS and 10 % BWS and fast TS and 20 % BWS, children with CP had better gait symmetry and less differences of gait parameters from those in non-disabled children. It is suggested that children with CP may benefit with gait training with fast TS and 10% BWS or 20% BWS.
論文目次 中文摘要..........I
英文摘要..........III
致謝..........V
目錄..........VI
表目錄..........IX
圖目錄..........X

第一章 緒論..........1
第一節 研究背景..........1
第二節 跑步機合併體重支撐步行訓練的理論基礎..........2
第一項 活化中心步態產生器..........2
第二項 動作控制與動作學習理論..........2
第三節 跑步機合併體重支撐步行訓練的文獻回顧..........3
第一項 動物實驗..........3
第二項 人類實驗..........4
第四節 跑步機合併體重支撐步行訓練的影響參數..........6
第一項 懸吊重量..........6
第二項 跑步機速度..........7
第五節 跑步機合併體重支撐步行訓練結果之評估方式..........8
第六節 研究問題與目標..........9
第二章 研究方法..........10
第一節 研究對象..........10
第二節 實驗設備..........11
第三節 實驗流程..........12
第四節 參數定義與資料處理..........14
第五節 統計分析..........16
第三章 結果..........17
第一節 受試者基本資料..........17
第二節 步態參數..........19
第一項 步頻(步/分鐘)..........26
第二項 步長(步長/身高)..........27
第三項 步態週期(秒)..........28
第四項 單腳站立期(%)..........30
第五項 站立期(%) ..........31
第六項 第一極大值(牛頓/體重)..........33
第七項 第二極大值(牛頓/體重)..........35
第八項 步長之對稱性..........37
第九項 單腳站立期之對稱性..........38
第十項 第一極大值之對稱性..........40
第十一項 第二極大值之對稱性..........41
第四章 討論..........43
第一節 腦性麻痺兒童與正常發展兒童步態參數之比較..........43
第二節 懸吊重量對步態影響之探討..........44
第三節 跑步機速度對步態影響之探討..........47
第五章 結論..........50
參考文獻..........51
自述..........56
參考文獻 1. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412(1):84-95, 1987.
2. Belli A, Bui P, Berger A, Geyssant A, Lacour JR. A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J Biomech 34(1):105-12, 2001.
3. Bobath K. A neurophysiological basis for the treatment of cerebral palsy, 2nd ed. New York: Cambridge University, 1980.
4. Chen G, Patten C, Kothari DH, Zajac FE. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture 22(1):57-62, 2005.
5. Day JA, Fox EJ, Lowe J, Swales HB, Behrman AL. Locomotor training with partial body weight support on a treadmill in a nonambulatory child with spastic tetraplegic cerebral palsy: a case report. Pediatr Phys Ther 16(2):106-13, 2004.
6. da Cunha IT Jr, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 83(9):1258-65, 2002.
7. Diop M, Rahmani A, Belli A, Gautheron V, Geyssant A, Cottalorda J. Influence of speed variation and age on the asymmetry of ground reaction forces and stride parameters of normal gait in children. J Pediatr Orthop B 13(5):308-14, 2004.
8. Diop M, Rahmani A, Belli A, Gautheron V, Geyssant A, Cottalorda J. Influence of speed variation and age on ground reaction forces and stride parameters of children’s normal gait. Int J Sports Med 26(8):682-7, 2005.
Draper ER. A treadmill-based system for measuring symmetry of gait. Med Eng Phys 22(3):215-22, 2000.
9. Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 71(11):842-55, 1991.
10. Filion G, Richards CL, Malouin F. Changes induced by weight-support on gait in normal children during treadmill-walking. Arch Phys Med Rehabil 74:1265-6, 1993.
11. Gage JR. Gait analysis in cerebral palsy. London :MacKeith Press 101-17, 1991.
12. Giakas G, Baltzopoulos V. Time and frequency domain analysis of ground reaction forces during walking: an investigation of variability and symmetry. Gait Posture 5(3):189-97, 1997.
13. Hassid E, Rose D, Commisarow J, Guttry M, Dobkin BH. Improved gait symmetry in hemiparetic stroke patients induced during body weight-supported treadmill stepping. Neurorehabil Neural Repair 11(1):21-6, 1997.
14. Herzog W, Nigg BM, Read LJ, Olsson E. Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110-4, 1989.
15. Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH. Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. Neurorehabil Neural Repair 11(1):15-20, 1997.
16. Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch Phys Med Rehabil 80(4):421-7, 1999.
17. Hesse S. Treadmill training with partial body weight support in Hemiparetic patients—Future research needed. Neurorehabil Neural Repair 13(3):179-81, 1999.
18. Hesse S. Locomotor therapy in neurorehabilitation. NeuroRehabilitation 16(3):133-9, 2001.
19. Liao HF, Jeng SF, Lai JS, Cheng CK, Hu MH. The relation between standing balance and walking function in children with spastic diplegic cerebral palsy. Dev Med Child Neurol 39(2):106-12, 1997.
20. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92(2):421-35, 1986.
21. McNevin NH, Coraci L, Schafer J. Gait in adolescent cerebral palsy: the effect of partial unweighting. Arch Phys Med Rehabil 81(4):525-8, 2000.
22. Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, Kang J. Treadmill training with body weight: its effect in Parkinson disease. Arch Phys Med Rehabil 81(7):849-52, 2000.
23. Mudge S, Rochester L, Recordon A. The effect of treadmill training on gait, balance and trunk control in a hemiplegic subject: a single system design. Disabil Rehabil 25(17):1000-7, 2003.
24. Owings TM, Grabiner MD. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J Biomech 37(6):935-8, 2004.
25. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39(4):214-23, 1997.
26. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients:a randomized controlled trial. Stroke 33(2):553-8, 2002.
27. Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil 82(6):825-31, 2001.
28. Richards CL, Malouin F, Dumas F, Marcoux S, Lepage C, Menier C. Early and intensive treadmill locomotor training for young children with cerebral palsy: a feasibility study. Pediatr Phys Ther 9(4):158-65, 1997.
29. Rupp R, Schablowski M, Gerner HJ, Steppat C, Bruggemann GP. A novel approach to gait analysis on the treadmill I) development of an instrumented treadmill. Gait Posture 10(1):82-3, 1999.
30. Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil 81(3):301-6, 2000.
31. Shepherd R, Carr J. Treadmill walking in neurorehabilitation. Neurorehabil Neural Repair 13(3):171-3, 1999.
32. Stansfield BW, Hillman SJ, Hazlewood ME, Lawson AM, Mann AM, Loudon IR, Rob JE. Normalized speed, not age, characterizes ground reaction force patterns in 5-to 12-year-old children walking at self-selected speeds. J Pediatr Orthop 21(3):395-402, 2001.
33. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and paretic paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 83(5):683-91, 2002.
34. Threlkeld AJ, Cooper LD, Monger BP, Craven AN, Haupt HG. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture 17(3):235-45, 2003.
35. Visntin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 29(6):1122-8, 1998.
36. Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci 7(4):823-9, 1995.
37. White SC, Tucker JA, Brangaccio JA, Lin HY. Relation of vertical ground reaction forces to walking speed. Gait Posture 4:206, 1996.
38. White SC, Yack HJ, Tucker CA, Lin HY. Comparison of vertical ground reaction forces during overground and treadmill walking. Med Sci Sports Exerc 30(10):1537-42, 1998.
39. White R, Agouris I, Selbie RD, Kirkpatrick M. The variability of force platform data in normal and cerebral palsy gait. Clin Biomech (Bristol, Avon) 14(3):185-92, 1999.
40. Winstein CJ, Gardner ER, McNeal DR, Barto PS, Nicholson DE. Standing balance training: effects on balance and locomotion in hemiparetic adults. Arch Phys Med Rehabil 70(10):755-62, 1989.
41. Campbell SK. Pediatric Neurologic Physical Therapy. Clinics in Physical Therapy. 2nd ed. New York: Chirchill Livingstone 301-60, 1991.
42. 胡名霞。動作控制與動作學習。金名圖書:台北市。2001年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-02-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-02-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw