進階搜尋


 
系統識別號 U0026-0812200913334407
論文名稱(中文) 無閥式磁控微幫浦之設計、製作與分析
論文名稱(英文) Design, Fabrication and Analysis of Valve-less Micro Pumps under Magnetic Control
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 黃偉銘
研究生(英文) Wei-Min Huang
學號 n1693162
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 口試委員-李祖聖
口試委員-陳添智
指導教授-蔡南全
中文關鍵字 微機電技術  微幫浦  閉迴路控制 
英文關鍵字 micro-electro-mechanical technology  closed-loop control  micropump 
學科別分類
中文摘要 近幾年來,由於微流體元件的快速成長進步及其應用領域越來越廣,因此微流體元件發展顯得越來越重要,尤以驅動源元件,如微幫浦。本研究利用微機電製程技術製造一新式微型幫浦,再以電鍍所製作之微迴線圈,通以電流,利用線圈所產生之電磁力作為微幫浦之動力來源。在製作設計微幫浦之前,並同時以模擬軟體(CFDRC及ANSOFT)加以交叉模擬,以設計出符合經濟效益之微幫浦設計。最後再將微幫浦結合電腦,利用硬體DS1104及套裝軟體Matlab,針對微幫浦進行控制,以達成可控式微系統之實現。
英文摘要 Due to dramatic progress in microfluidic devices and their applications, the development of microfluidic systems become more and more pertinent in recent years, such as the fluidic activation devices, micro sensors and micropumps. In this research, micro-electro-mechanical fabrication technologies will be used to design and fabricate a new valve-less micro pump under magnetic control. The microcoil is fabricated by electroforming and ultized to generate control force for the micropump. Prior to the fabrication of micropump, commercial softwares CFD-RC and ANSOFT are employed to simulate the performance of the designed micropump. CFD-RC is to observe the flow field and pressure in the microchannel, and ANSOFT to see if the magnetic force is sufficient enough to activate the membrane of the micropump. Finally, the micropump will be equipped with computer, in which hardware DS1104 and software Matlab are embedded, to realize the closed-loop microsystem.
論文目次 中文摘要............................................................................................................i
Abstract............................................................................................................ii
誌謝..................................................................................................................iii
目錄..................................................................................................................iv
圖目錄.............................................................................................................vii
表目錄............................................................................................................xiii

第一章 序論.....................................................................................................1
1-1 前言.........................................................................................................1
1-2 文獻回顧.................................................................................................3
1-3 研究目的...............................................................................................12
第二章 微幫浦晶片之設計...........................................................................13
2-1無閥式微幫浦之工作原理及設計.........................................................13
2-2 CFDRC軟體介紹...................................................................................16
2-3 CFDRC軟體模擬...................................................................................18
2-3-1 Diffuser與Nozzle element皆為圓弧端入口之模擬.....................19
2-3-2 Diffuser與Nozzle element皆為銳利端入口之模擬.....................25
2-4 微線圈設計...........................................................................................31
2-4-1 ANSOFT軟體介紹..........................................................................31
2-4-2 ANSOFT模擬..................................................................................32
2-5 光罩設計...............................................................................................37
第三章 微幫浦晶片之製作...........................................................................41
3-1 製作流程...............................................................................................41
3-2 上片-微流道之製作…...……………………………………………42
3-2-1 SU-8母膜製程................................................................................42
3-2-2 微流道製程....................................................................................53
3-2-2-1聚二甲基系氧烷矽膠(Polydimethylsiloxane, PDMS)...........53
3-2-2-2 PDMS製程..............................................................................55
3-3 中片-振動薄膜元件之製作..............................................................59
3-3-1 薄膜製作........................................................................................59
3-3-2 感測元件之製作............................................................................60
3-4 下片-微迴線圈之製作......................................................................62
3-4-1 前製程-光阻製程..........................................................................64
3-4-2 後製程-電鍍製程..........................................................................68
第四章 微幫浦之控制與實證.......................................................................74
4-1 DS1104軟體簡介.................................................................................74
4-1-1軟體說明..........................................................................................74
4-1-2硬體說明..........................................................................................75
4-2 微幫浦之振幅量測...............................................................................75
4-3 微幫浦之控制流程...…………………………………………………77
4-4 控制器之參數設定.……………………………………..……………78
第五章 結論與未來展望...............................................................................87
5-1 結論.......................................................................................................87
5-2 未來展望...............................................................................................87
參考文獻.........................................................................................................89
附錄.................................................................................................................91
自述.................................................................................................................92

圖目錄
圖1-1 壓電式微幫浦.....................................................................................4
圖1-2 電磁式微幫浦.....................................................................................5
圖1-3 氣動式微幫浦.....................................................................................6
圖1-4 記憶合金式微幫浦製程.....................................................................7
圖1-5 記憶合金式微幫浦及實體圖.............................................................7
圖1-6 化學反應式微幫浦及其實體.………………………………………8
圖1-7 EHD式微幫浦及其製程....................................................................9
圖1-8 電滲式微幫浦...................................................................................10
圖2-1 擴散口/噴嘴之工作原理..................................................................14
圖2-2 擴散口角度與壓力損失係數關係圖...............................................15
圖2-3 擴散口尺寸設計圖...........................................................................15
圖2-4 CFDRC之分析流程.........................................................................17
圖2-5 擴散嘴入口幾何圖...........................................................................18
圖2-6 CFD-GEOM所建立之模型.............................................................19
圖2-7 Diffuser元件(圓弧)於CFD-ACE內所定義之邊界及初始條件…20
圖2-8 Diffuser之速度場.............................................................................20
圖2-9 Diffuser之流場.................................................................................21
圖2-10 Diffuser之壓力場...........................................................................21
圖2-11 Diffuser之壓力分佈.......................................................................22
圖2-12 Nozzle元件(圓弧)於CFD-ACE內所定義之邊界及初始條件....22
圖2-13 Nozzle之速度場.............................................................................23
圖2-14 Nozzle之流場.................................................................................23
圖2-15 Nozzle之壓力場.............................................................................24
圖2-16 Nozzle之壓力分佈.........................................................................24
圖2-17 Diffuser元件(銳利)於CFD-ACE內所定義之邊界及初始條件..25
圖2-18 Diffuser之速度場...........................................................................26
圖2-19 Diffuser之流場...............................................................................26
圖2-20 Diffuser之壓力場...........................................................................27
圖2-21 Diffuser之壓力分佈.......................................................................27
圖2-22 Nozzle元件(銳利)於CFD-ACE內所定義之邊界及初始條件....28
圖2-23 Nozzle之速度場.............................................................................28
圖2-24 Nozzle之流場.................................................................................29
圖2-25 Nozzle之壓力場.............................................................................29
圖2-26 Nozzle之壓力分佈.........................................................................30
圖2-27 ANSOFT分析流程圖.....................................................................32
圖2-28 ANSOFT幾何模型.........................................................................33
圖2-29 邊界條件設定.................................................................................34
圖2-30 計算容許誤差.................................................................................34
圖2-31 計算磁力大小.................................................................................35
圖2-32 磁通密度分佈圖.............................................................................35
圖2-33 磁力線密度分佈.............................................................................36
圖2-34 磁場強度分佈圖.............................................................................36
圖2-35 磁力線分佈.....................................................................................37
圖2-36 微迴線圈之光罩及實體圖.............................................................38
圖2-37 微流道之光罩及實體圖.................................................................39
圖2-38 整體光罩設計.................................................................................39
圖3-1 塗佈機轉速示意圖...........................................................................45
圖3-2 SU-8 50之軟烤曲線(預設厚度為50 μm).......................................45
圖3-3 曝光機制示意圖...............................................................................47
圖3-4 駐波效應...........................................................................................48
圖3-5 SU-8 50之PEB加熱曲線.................................................................48
圖3-6 儲液槽角落未顯影乾淨造成部分SU-8光阻殘留..........................49
圖3-7 微噴嘴結構未顯影乾淨造成部分SU-8光阻殘留...........................50
圖 3-8 母膜結構 (幫浦腔體及微噴嘴結構).............................................50
圖3-9 母膜結構(儲液槽及微噴嘴結構) ...................................................51
圖3-10 浸泡過久造成微噴嘴結構過分顯影.............................................51
圖3-11 浸泡過久造成儲液槽結構過分顯影.............................................52
圖3-12 PDMS之化學結構式.....................................................................54
圖3-13 PDMS脫模結構圖.........................................................................56
圖3-14 PDMS結構近照圖.........................................................................57
圖3-15 PDMS加熱時間與溫度之關係圖.................................................57
圖3-16 脫模失敗圖.....................................................................................58
圖3-17 上片之製程.....................................................................................59
圖3-18 感測元件圖.....................................................................................60
圖3-19 元件尺寸圖.....................................................................................61
圖3-20 中片之製程.....................................................................................62
圖3-21 國科會南區微奈米中心的電子束蒸鍍系統.................................63
圖3-22 KMPR之軟烤曲線(厚度約為30 μm)...........................................66
圖3-23 KMPR之曝後烤曲線(厚度約為30 μm).......................................66
圖3-24 KMPR微結構近照.........................................................................67
圖3-25 微線圈光阻圖形圖.........................................................................67
圖3-26 電鍍之後的線圈結構(銅)...............................................................68
圖3-27 線圈中心及Pad結構(銅)................................................................68
圖3-28 電鍍之後的線圈結構(鎳)...............................................................69
圖3-29 線圈中心及Pad結構(鎳)...............................................................69
圖3-30 蝕刻後之微線圈(鎳).......................................................................70
圖3-31 OM顯微鏡照..................................................................................70
圖3-32 下片之製程.....................................................................................71
圖3-33 微幫浦完成圖.................................................................................72
圖3-34 微幫浦實體完成圖.........................................................................72
圖4-1 Power PC 603e/ 250 MH控制板......................................................75
圖4-2 電流對薄膜振福大小之關係圖.......................................................76
圖4-3 微幫浦實務控制架構.......................................................................78
圖4-4 於Matlab內所設計之即時控制流程..............................................81
圖4-5 輸入訊號對峰對峰值大小之關係圖...............................................82
圖4-6 輸入訊號: 1×10-6伏特之正弦波......................................................83
圖4-7 輸入訊號: 2×10-6伏特之正弦波......................................................83
圖4-8 輸入訊號: 3×10-6伏特之正弦波......................................................84
圖4-9 輸入訊號: 4×10-6伏特之正弦波......................................................84
圖4-10 輸入訊號: 5×10-6伏特之正弦波....................................................85
圖4-11 輸入訊號: 6×10-6伏特之正弦波....................................................85
附錄圖1 擴散口噴嘴和 的關係圖..........................................................91
附錄圖2 擴散口穩定圖...............................................................................91

表目錄
表1-1 微流體元件產值預估表.....................................................................2
表1-2 各式微幫浦之驅動方式及功能根據...............................................11
表2-1 CFD-ACE 物理分析模組................................................................16
表2-2 入口端效能比較表...........................................................................31
表2-3 ANSOFT模擬幾何模型尺寸...........................................................33
表3-1 化學清洗液與清潔物.......................................................................43
表3-2 SU-8 50光阻塗佈分段轉速.............................................................44
表3-3 PDMS之優缺點列表........................................................................55
表3-4 KMPR光阻塗佈分段轉速...............................................................65
表4-1 電流對薄膜振福之關係.....................................................................76
表4-2 輸入訊號與峰對峰值大小關係.........................................................82
參考文獻 1. J. H. Kim, C. J. Kang, Y. S. Kim, “A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc,” Microelectronic Engineering, Vol. 7, pp. 119-124, 2004.
2. C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M. Gijs, “A PMMA valveless micropump using electromagnetic actuation,” Microfluid Nanofluid, Vol. 1, pp. 197-207, 2005.
3. J. M. Berg, R. Anderson, M. Anaya, B. Lahlouh, M. Holtz, T. Dallas, “A two-stage discrete peristaltic micropump,” Sensors and Actuators A, Vol. 104, pp. 6-10, 2003.
4. D. Xu, L. Wang, G. Ding, “Characteristics and fabrication of TiNi/Si diaphragm micropump,” Sensors and Actuators A, Vol. 93, pp. 87-92, 2001.
5. Y. H. Choi, S. U. Son, S. S. Lee, “A micropump operating with chemically produced oxygen gas,” Sensors and Actuators A, Vol. 111, pp. 8-13, 2004.
6. L. J. Yang, J. M. Wang, Y. L. Huang, “The micro ion drag pump using indium-tin-oxide (ITO) electrodes to resist aging,” Sensors and Actuators A, Vol. 111, pp. 118-122, 2004.
7. C. H. Chen, J. G. Santiago, “A Planar Electroosmotic Micropump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 672-683, 2002.
8. M. Koch, N. Harris, A. G. R. Evans, N. M. White, A. Brunnschweile, “A novel micromachined pump based on thick-film piezoelectric actuation,” Sensors and Actuators A, Vol. 70, pp. 98-103, 1998.
9. T. Pan, S. J McDonald, Eleanor M Kai, B. Ziaie, “A magnetically driven PDMS micro pump,” Journal of Micomechanics and Micoengineering, Vol. 15, pp. 1021–1026, 2005.
10. W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “Thin-Film Shape-Memory Alloy Actuated Micropumps,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, pp. 245-251, 1998.
11. O. C. Jeong, S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated P+ diaphragm,” Sensors and Actuators A, Vol. 83, pp. 249-255, 2000.
12. J. H. Kim, K. H. Na, C. J. Kang, Y. S. Kim, “A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass,” Sensors and Actuators A, Vol. 120, pp. 365-369, 2005.
13. O. C. Jeong, S. W. Park, S. S. Yang, J. J. Pak, “Fabrication of a peristaltic PDMS micropump,” Sensors and Actuators A, Vol. 123-124, pp. 453-458, 2005.
14. K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, E. Yoon, “A Surface-Tension Driven Micropump for Low-Voltage and Low-Power Operations,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 454-461, 2002.
15. Anders Olsson, 1998 ,“Valve-less Diffuser Micropumps, ” Instrumentation Laboratory Department of Signals, Sensors and Systems Royal Institute of Technology.
16. F. M. White, “Fluid Mechanics,” McGraw-Hill, New York pp. 334-336, 345-351, 1986.
17. R. W. Fox , S. J. Kline, “Flow Regime Data and Design Methods for Curved Subsonic Diffusers,” Journal of Basic Engineering, Vol. 84, pp. 303-312, 1962.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-10-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-10-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw