進階搜尋


 
系統識別號 U0026-0812200912103199
論文名稱(中文) 運動對大白鼠主動脈血管處理脂蛋白後內皮細胞鈣離子訊號改變之影響
論文名稱(英文) Effects of Exercise on the Lipoprotein-Induced Endothelial Calcium Signaling Changes in Rat Aortas
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 94
學期 2
出版年 95
研究生(中文) 高曉莉
研究生(英文) Sheau-Li Kao
學號 s3693408
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 召集委員-江美治
指導教授-任卓穎
口試委員-陳洵瑛
中文關鍵字 脂蛋白  鈣離子訊號  運動 
英文關鍵字 lipoprotein  exercise  calcium signaling 
學科別分類
中文摘要 運動訓練可以減低心血管疾病的發生和增加內皮細胞的功能。已經有許多文獻指出,氧化型的低密度脂蛋白 (oxidized low density lipoprotein,oxLDL) 會影響內皮細胞功能表現。有文獻利用大白兔的血管段處理氧化型低密度脂蛋白後,可以發現其血管舒張反應受到抑制,但是若同時給予高密度脂蛋白 (high density lipoprotein,HDL) 時,抑制情形明顯減緩。在本實驗室之前的研究,發現經過長期中度運動訓練的高血脂的大白兔中,其內皮細胞鈣離子訊號明顯改善,但是血漿中的血脂指數卻未顯著降低。因此假設運動訓練後所帶來的正面影響,是透過改變內皮細胞在面對脂蛋白時的敏感性來達成。我們利用雄性Wistar品系大白鼠為實驗動物,分為運動組給予8週長期中度運動訓練和同齡的控制組,將之在無壓力情況下犧牲取下胸主動脈血管,並處理不同的脂蛋白,包括: 未氧化的低密度脂蛋白 (native low density lipoprotein,nLDL)、不同氧化程度之低密度脂蛋白和高密度脂蛋白,最後再以乙醯膽鹼誘發內皮細胞鈣離子訊號強度檢測其內皮細胞功能。結果顯示1) 低密度脂蛋白氧化程度鑑定可以由TBARS (Thiobarbituric acid reacting substances) 和conjugated dienes兩個參數判別,利用銅離子催化的氧化型低密度脂蛋白,其氧化程度隨著氧化時間增加而增加,但是藉由鐵離子催化的輕微氧化型低密度脂蛋白 (minimally modified LDL,mmLDL),顯示在TBARS值只有些微的增加而conjugated dienes卻顯著地上升;2) 各類脂蛋白處理並不直接激發大白鼠胸主動脈的鈣離子訊號;3) 在控制組測得之乙醯膽鹼誘發之內皮細胞鈣離子訊號,不受HDL或mmLDL處理影響,nLDL處理大幅增強,因處理之oxLDL氧化程度加劇而由增強變為抑制;4) 在運動組,測得之乙醯膽鹼誘發之內皮細胞鈣離子訊號,不受mmLDL和oxLDL-4 (氧化四個小時之氧化型低密度脂蛋白) 處理之影響,nLDL或HDL處理而大幅增強,因oxLDL-8 (氧化八個小時之氧化型低密度脂蛋白) 處理而小幅抑制;5) 在控制組和運動組,以HDL與不同氧化程度之oxLDL一起混合處理,內皮細胞鈣離子訊號都有顯著改善的現象。總結來說,運動訓練對於血管功能的好處之ㄧ是,增加了血管對於氧化型低密度脂蛋白的耐受性與高密度脂蛋白的敏感性。

英文摘要 Exercise training improves vascular endothelial functions, while oxidized-low density lipoprotein (oxLDL) impedes them. Studies using vessel segments have shown that oxLDL decrease vasorelaxation response while high density lipoprotein (HDL) reverses this effect. Interestingly, exercise training improves endothelial calcium signaling in hypercholesteremic rabbits without significantly altering their plasma lipoprotein levels. Thus exercise training may influence the endothelial sensitivity to lipoprotein-induced vascular changes. To address this issue, male Wister rats were divided into control and exercise groups. Endothelial functions in vitro were examined using dissected aortic segments treated with different lipoproteins, including native LDL (nLDL), various oxLDLs, and HDL. We monitored the acetylcholine-induced EC [Ca2+]i signaling. Results showed that native LDL and various oxLDLs could be characterized by their values of TBARS (Thiobarbituric acid reacting substances) and conjugated dienes. The extent of LDL oxidation increased with increasing Cu2+-oxidation time. In contrast the Fe3+-oxidized LDL (minimally modified LDL, mmLDL) showed distinctive rises in conjugated dienes with minimal increases in TBARS value. None of the various lipoproteins directly induced endothelial [Ca2+]i signaling. The acetylcholine-evoked endothelial [Ca2+]i elevation was unaltered by HDL or mmLDL, increased by nLDL and oxLDL-2, and suppressed by oxLDL-4 (oxidized for 4 hours) and oxLDL-8 (oxidized for 8 hours) in control group. When HDL was mixed with various oxLDLs, the suppressive effects by oxLDL-4 and oxLDL-8 were ameliorated. In the exercise group, lipoproteins affected the acetylcholine-evoked endothelial [Ca2+]i signaling in a similar way except that 1) the oxLDL-induced suppressive effects were ameliorated; 2) HDL showed potentiation effect by itself and further reduced the oxLDL-induced suppressive effects. Taken together, one of the beneficial effects of exercise training on vascular functions is to make blood vessels more resistant to the adverse effects of oxLDL and more sensitive to the protective effects of HDL.

論文目次 中文摘要 ----------------------------------- Ⅰ
英文摘要 ----------------------------------- Ⅲ
誌謝 --------------------------------------- Ⅴ
目錄 --------------------------------------- Ⅵ
表目錄 ------------------------------------- Ⅷ
圖目錄 ------------------------------------- Ⅸ
Ⅰ. 導論 ----------------------------------- 1
Ⅱ. 實驗材料 ------------------------------- 9
Ⅲ. 實驗方法 ------------------------------- 16
運動訓練 ----------------------------------- 16
血脂指數之測定 ----------------------------- 16
檸檬酸合成酵素活性之測定 ------------------- 17
脂蛋白之製備 ------------------------------- 18
透析脂蛋白 --------------------------------- 20
氧化型低密度脂蛋白製備 --------------------- 21
脂蛋白濃度測定 ----------------------------- 22
氧化程度測定Ⅰ(Thiobarbituric acid reacting substances) -- 23
氧化程度測定Ⅱ (The formation of conjugated dienes) -- 24
氧化程度測定Ⅲ (Agarose gel electrophoresis) -- 24
實驗動物麻醉與犧牲 ------------------------- 25
血管之製備與螢光染色 ----------------------- 25
血管固定與組織流體室組裝 ------------------- 26
儀器裝置 ----------------------------------- 26
乙醯膽鹼誘發內皮細胞鈣離子訊號之測定與校正 - 27
大白鼠主動脈血管之免疫螢光染色 ------------- 30
統計分析 ----------------------------------- 30
Ⅳ. 實驗結果 ------------------------------- 31
Ⅴ. 討論 ----------------------------------- 38
Ⅵ. 參考文獻 ------------------------------- 49
表 ----------------------------------------- 53
圖 ----------------------------------------- 55
附圖 --------------------------------------- 69
參考文獻 1. Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998; 67: 199-225.

2. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004; 95: 764-772.

3. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999; 274: 32512-32519.

4. Burneiko RC, Diniz YS, Faine LA, Galhardi CM, Padovani CR, Novelli EL, Cicogna AC. Impact of the training program on lipid profile and cardiac health. Biol Res. 2004; 37: 53-59.

5. Chen HI, Li HT. Physical conditioning can modulate endothelium- dependent vasorelaxation in rabbits. Arterioscler Thromb. 1993; 13: 852–856.

6. Cominacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Contessi GB, Pastorino AM, and Lo CV. Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells. Free Radic. Biol. Med. 1997; 22: 117–127.

7. Coresh J, Kwiterovich PO Jr. Small, dense low-density lipoprotein particles and coronary heart disease risk: A clear association with uncertain implications. JAMA. 1996; 276: 914-915.

8. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium-dpendent vasoreactivity of rat abdominal aorta. J Appl Physiol. 1993; 75: 1354–1363.

9. Despres JP, Moorjani S, Tremblay A, Poehlman ET, Lupien PJ, Nadeau A, Bouchard C. Heredity and changes in plasma lipids and lipoproteins after short-term exercise training in men. Arteriosclerosis. 1988; 8: 402-409.

10. Durstine JL, Grandjean PW, Cox CA, Thompson PD. Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil. 2002; 22: 385-398.

11. Fielding CJ. Caveolae and signaling. Curr Opin Lipidol. 2001; 12: 281 - 287.

12. Fielding CJ and Fielding PE. Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta. 2000; 1529: 210-222.

13. Galle J, Luckhoff A, Busse R, Bassenge E. Low-density lipoproteins stimulate internal free calcium and prostacyclin release in endothelial cells. Eicosanoids. 1990; 3: 81-86.

14. Gratton JP, Bematchez P, and Sessa WC. Caveolae and Caveolins in the Cardiovascular System. Circ Res. 2004; 94: 1408-1417.

15. Grynkiewicz G, Poenie M, and Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985; 260: 3440-3450.

16. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997; 100: 2153-2157.

17. Huang TY, Chen HI, Liu CY, Jen CJ. Lysophosphatidylcholine alters vascular tone in rat aorta by suppressing endothelial [Ca2+]i signaling. J Biomed Sci. 2002; 9: 327-333.

18. Huang TY, Chu TF, Chen HI, and Jen CJ. Heterogeneity of [Ca2+]i signaling in intact rat aortic endothelium. FASEB J. 2000;14:797-804.

19. Jen CJ, Chan HP, and Chen HI. Chronic exercise improves endothelial
calcium signaling and vasodilatation in hypercholesterolemic rabbit
femoral artery. Arterioscler Thromb Vasc Biol. 2002; 22: 1219-1224.
20. Kockx MM. Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler. Thromb. Vasc.Biol. 1998; 18: 1519-1522.

21. Kohno M, Yokokawa K, Yasunari K, Minami M, Kano H, Hanehira T, and Yoshikawa J. Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration. Circulation. 1998; 98: 353-359.

22. Kokkinos PF, Holland JC, Narayan P, Colleran JA, Dotson CO, Papademetriou V. Miles run per week and high-density lipoprotein cholesterol levels in healthy, middle-aged men. A dose-response relationship. Arch Intern Med. 1995; 155: 415-420.

23. Libby P, Ridker PM, and Maseri A. Inflammation and atherosclerosis. Circulation. 2002; 105: 1135-1143.

24. Lusis AJ. Atherosclerosis. Nature. 2000; 407: 233-241.

25. Matsuda Y, Hirata K, Inoue N, Suematsu M, Kawashima S, Akita H, Yokoyama M. High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res. 1993; 72: 1103-1109.

26. Michel T, and Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997; 100: 2146-2152.

27. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991; 88: 2039-2046.

28. Oram JF. ATP-binding cassette transport A1 and cholesterol trafficking. Curr Opin Lipidol. 2002; 13: 373-381.

29. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman A M, and Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophagecolony-stimulating factors by modified low-density lipoproteins. Nature. 1990; 344: 254–257.

30. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999; 281: 1722-1727.

31. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989; 320: 915-924.

32. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem. 2000; 275: 11278-11283.

33. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997; 272: 13597- 13607.

34. Williams PT, Krauss RM, Vranizan KM, Albers JJ, Terry RB, Wood PD. Effects of exercise-induced weight loss on low density lipoprotein subfractions in healthy men. Arteriosclerosis. 1989; 9: 623-632.

35. Yamaguchi Y, Kunitomo M, Haginaka J. Assay methods of modified lipoproteins in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2002; 781: 313-330.
36. Yang AL and Chen HI. Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in
hypercholesterolemic rabbit aortae. Atherosclerosis. 2003; 169: 11-17.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw