進階搜尋


 
系統識別號 U0026-0812200912101978
論文名稱(中文) 小腸去神經後內外源神經再生的研究
論文名稱(英文) Differential neuronal degeneration and regeneration after deprivation of innervations of small intestine
校院名稱 成功大學
系所名稱(中) 細胞生物及解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 94
學期 2
出版年 95
研究生(中文) 唐麗鶯
研究生(英文) Li-Ying Tang
電子信箱 t9693403@mail.ncku.edu.tw
學號 t9693403
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-柯妙華
口試委員-林炳文
指導教授-沈延盛
指導教授-簡基憲
中文關鍵字 神經再生  神經變性  小腸  腸神經系統 
英文關鍵字 nerve regeneration  enteric nervous system  small intestine  nerve degeneration 
學科別分類
中文摘要 腸道包含內、外源的神經支配。外源性神經包含交感節後神經與副交感節前神經,含有膽鹼、腎上腺素與非腎上腺性非膽鹼性神經。膽鹼神經功能為促使小腸收縮,腎上腺素與非腎上腺性非膽鹼性神經負責鬆弛作用,收縮與放鬆小腸壁平滑肌令小腸維持正常的蠕動。內源性神經為腸神經系統,具有感覺神經元、中間神經元、興奮性與抑制性運動神經元,藉由各種神經傳遞物質與胜肽,表現腸道不同的生理功能。小腸因疾病或傷害失去蠕動功能後,小腸移植可提供一種治療上的選擇。小腸移植手術會破壞小腸的內、外源神經,手術成功後需要神經的再生來恢復小腸原有的功能。本實驗的目的在於觀察小腸內、外源神經移除後,神經細胞變性與再生的情形,藉此了解,去神經支配對小腸的影響。首先,以手術剝除小腸之神經支配,再利用各種不同的神經標誌、神經傳遞物質、與神經生長因子,觀察小腸的神經再生。採用雄性Wistar Rat為實驗動物,對照組僅將小腸段迴腸-結腸切斷之後再予以吻合重建; 實驗組除施行對照組相同手術外,同時再將外源性神經剝除,觀察術後一天、兩週和四週的變化情形。將蜜蜂毒素注射於盲腸腸壁刺激c-fos活化,再利用c-fos表現以了解外源性神經再支配的情形。術後四週,對照組比實驗組有較高的c-fos 表現量,顯示術後四週還沒有神經再支配的現象,而這些差異主要表現在脊髓 T11-L1 節段上。神經標誌PGP 9.5,和會表現於小腸腸神經系統的神經傳遞物質乙醯膽鹼轉化酉每 、酪氨酸羥化
酉每 與一氧化氮合成酉每 ,觀察小腸上神經的分佈與變化。與對照組相比,實驗組結果顯示 (一) PGP9.5神經細胞數量有減少的趨勢,隨著術後時間的增加而減少﹔(二) 乙醯膽鹼轉化酉每 陽性細胞表現量下降﹔(三) 酪氨酸羥化酉每 陽性細胞有較多的表現,隨著術後的時間增加而減少﹔(四) 一氧化氮合成酉每 陽性細胞數量增加,而且隨著時間的增加而增加。本實驗結果顯示神經剝除導致神經細胞數量減少,乙醯膽鹼轉化酉每 與酪氨酸羥化酉每 表現量下降,一氧化氮合成酉每 表現量增加,顯示外源小腸神經再生可能需要多於四週的時間,為維持小腸功能,內源性含一氧化氮合成酉每 之小腸神經元會增加分佈比率。




英文摘要 The innervation of small intestine includes extrinsic and intrinsic component. The extrinsic component includes cholinergic, adrenergic, and nitrergic nerves. Cholinergic component is the key driver for bowel contraction, adrenergic and nitrergic components are the responsible counterparts for relaxation property of smooth muscle of bowel to maintain normal peristalsis. There also exists intrinsic pacemaker cell to maintain intrinsic rhythm, and different kinds of neuropeptide-containing interneurons to maintain normal physiological function of the intestine. Intestinal failure can be caused by disease or trauma that affects how the intestine absorbs nutrients or moves food through the intestinal tract. Small bowel transplantation is the sole method to treat intestinal failure. However, the reinnervation of the transplanted intestine is crucial to regain bowel function. Therefore, the objective of present study is to investigate whether neurons could reinnervate the bowel after deprival of innervations of small intestine. The first is to prove the reinnervation of the extrinsic nerve pathway from pain pathway via c-fos expression in the neurons in the spinal cord after deprivation of small bowel innervation. Male Wistar rats were divided into two groups: denervation group with deprivation of innervation ileocecal segment and reanastomosis of gastrointestinal tract after disconnections of two ends of ileocolon, and control groups only with reanastomosis of gastrointestinal tract after disconnections of two ends of ileocolon. Bee venom was injected into the wall of cecum to induce expression of transcription factor c-fos by visceral stimulus. c-fos were observed in laminae I-VII and X of T8-L2 spinal cord and DMV of medulla oblongata in normal and denervation group. Denervation results in a significant decrease in c-fos expression of T11-L2 segments from 1 day to 4 weeks. Expression of c-fos protein revealed that the extrinsic nerves did not to reinnervate the rat GI tract at 4 weeks post operation. The second is to examine the reinnervation of the enteric neurons. Neuronal marker PGP9.5 was employed to detect neuron numbers in the myenteric plexuses of ileum and colon. Choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) were expressed in extrinsic nerve fiber and intrinsic enteric neurons of the intestine.When comparing with the control group, the denervation group showed: (1) loss of PGP9.5 neurons after deprival 1 day, 2 weeks and 4 weeks and significantly decresed at 4 weeks after denervation; (2) persistent decreasing the numbers of ChAT positive neurons; (3) more percentage of TH positive neurons than control group, but persistent decreasing temporal course; (4) higher numbers of nNOS positive neurons and markedly increased at 4 weeks. Deprival of extrinsic innervation innervation leads to a decrese in PGP9.5-containing, ChAT-containing and TH-containing but an increase in nNOS-containing neurons expression in denervation group. Nerve regeneration after deprivation of innervation of small intestine was not found but increasing the percentage of nNOS-containing neurons to maintain bowel found was noted.



論文目次 一、 中文摘要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
二、 英文摘要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3
三、 誌謝 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
四、 緒論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
五、 材料與方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
六、 結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
七、 討論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・31
八、 結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・40
九、 參考文獻 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・41
十、 圖表說明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
參考文獻 1. A. E. G. Lomax, P.P. Bertrand, J.B. Furness. Identification of the populations of enteric neurons that have NK1 tachykinin receptors in the guinea-pig small intestine. Cell Tissue Res 1998; 294: 27-33.
2. A. Ru, H L, Y. Nasser & K. A. Sharkey. Enteric glia. Neurogastroenterol Motil 2004; 16 (Suppl. 1): 44–49.
3. Andreas M. Stadelmanna, John G. Finkb, Gordon L. Telfordc, Susan Walgenbach-Telfordd, Timothy R. Koche. Nitric oxide synthase is increased following small intestinal transplantation in the rat. Neuroscience Letters 1999; 266: 97-100.
4. Andrew J. Lawrence et al. Actions of nitric oxide and expression of the mRNA encoding nitric oxide synthase in rat vagal afferent neurons. European Journal of Pharmacology 1996; 315: 127-133.
5. Armstrong D M, Brady R, Hersh L B, Hayes R C, Wiley R G. Expression of choline acetyltransferase and nerve growth factor receptor within hypoglossal motoneurons following nerve injury. J Comp Neurol. 1991; 304(4): 596-607.
6. Atsushi Sugitani et al. Extrinsic intestinal reinnervation after canine small bowel autotransplantation. Surgery 1998; 123:25-35.
7. Axel Brehmer et al. Morphological classifications of enteric neurons: 100 years after Dogiel. Anat Embryol 1999; 200: 125-135.
8. Bakhit C, Armanini M, Wong W L, Bennett G L, Wrathall J R. Increase in nerve growth factor-like immunoreactivity and decrease in choline acetyltransferase following contusive spinal cord injury. Brain Res. 1991; 554(1-2): 264-71.
9. Chaouch, A., Menetrey, D., Binder, D., Besson, J.M.. Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: an anatomical study using horseradish peroxidase retrograde transport. J. Comp. Neurol. 1983; 214: 309–320.
10. Costa M, Furness J B, Pompolo S, Brookes S J H, Bornstein J C, Bredt D S, Snyder S H. Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea pig small intestine. Neurosci Lett 1992; 148:121–125.
11. David Grundy and Michael Schemann. Enteric nervous system. Current Opinion Gastroenterology 2005; 21: 176-182.
12. Deng Y S, Zhong J H, Zhou X F. BDNF is involved in sympathetic sprouting in the dorsal root ganglia following peripheral nerve injury in rats. Neurotox Res. 2000; 1(4):311-22.
13. Deng Y S, Zhong J H, Zhou X F. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol. 2000 Aug; 164(2): 344-50.
14. Dixon C E, Flinn P, Bao J, Venya R, Hayes R L. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp Neurol. 1997; 146(2): 479-90.
15. E.E.Daniel et al. Communication between interstitial cells of Cajal and gastrointestinal muscle. Neurogastroenterol Motil 2004; 16 (Suppl. 1): 118–122.
16. Eileen F. Grady, Peter Baluk, Stephan Bo hm, Patrick D. Gamp, Helen Wong, Donald G. Payan, John Ansel, Andrea L. Portbury, John B. Furness, Donald M. McDonald, and Nigel W. Bunnett. Characterization of Antisera Specific to NK1, NK2, and NK3 Neurokinin Receptors and their Utilization to Localize Receptors in the Rat Gastrointestinal Tract. The Journal of Neuroscience 1996; 16(21): 6975-6986.
17. G. M. Mawe, S. M. Collins and T. Shea-Donohue. Changes in enteric neural circuitry and smooth muscle in the inflamed and infected gut. Neurogastroenterol Motil 2004; 16 (Suppl. 1): 133–136.
18. Hans Albert Beiler A Karl-Herbert Scha. Histologic changes in neuronal innervation of the ileum mucosa after autologic-allotopic ileum mucosa transplantation. Pediatr Surg Int 2004; 20: 96-100.
19. H. Bult et al. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990; 345: 346-7.
20. J. Lazovic, A. Ouyang et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005; 17: 548–556.
21. J.B. Furness et al. Intrinsic primary afferent neurons of the intestine. Progress in Neurobiology 1998; 54: 1-18.
22. J.B. Furness. Types of neurons in the enteric nervous system. Journal of the Autonomic Nervous System 2000; 81: 87–96.
23. John B. Furness et al. Intrinsic primary afferent neurons and nerve circuits within the intestine. Progress in Neurobiology 2004; 72: 143–164.
24. Justin Schmidt. Toxicology of venoms from the honeybee genus Apis.Toxicon.1995; 33(7): 917-927.
25. Kazuhiko Watabe, Yuichi Hayashi and Yoko Kawazoe. Workshop: Recent advances in motor neuron disease peripheral nerve avulsion injuries as experimental models for adult motoneuron degeneration. Neuropathology 2005; 25: 371–380.
26. Kevin D. Barron .The axotomy response. Journal of the Neurological Sciences 2004; 220: 119-121.
27. Koichi Tanaka, Toshiko Matsugami, Tanemichi Chiba. The origin of sensory innervation of the peritoneum in the rat. Anat Embryol 2002; 205: 307-313.
28. Kou S Y, Chiu A Y, Patterson P H. Differential regulation of motor neuron survival and choline acetyltransferase expression following axotomy. J Neurobiol. 1995; 27(4):561-72.
29. Lago N, Navarro X. Correlation between target reinnervation and distribution of motor axons in the injured rat sciatic nerve. J Neurotrauma. 2006 Feb; 23(2): 227-40.
30. Lams B E, Isacson O, Sofroniew M V. Loss of transmitter-associated enzyme staining following axotomy does not indicate death of brainstem cholinergic neurons. Brain Res. 1988; 475(2): 401-6.
31. Lindqvist A, Rivero-Melian C, Turan I, Fried K. Neuropeptide- and tyrosine hydroxylase-immunoreactive nerve fibers in painful Morton's neuromas. Muscle Nerve. 2000; 23(8):1214-8.
32. Maria Francelina S. C. Lopes et al., Technique of intestinal transplantation in rat. Microsurgery 1998; 18: 424–429.
33. Matt S. Ramer. Development/plasticity/repair spontaneousfunctional viscerosensory regeneration into the adult brainstem. The Journal of Neuroscience 2003; 3(30): 9770-75.
34. Ma W, Eisenach J C. Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res. 2003 Apr 25; 970(1-2):110-8.
35. Michael K. Jarvinen et al., Nitric oxide synthase-containing neurons in the myenteric plexus of the gastrointestinal tract: distribution and regional density. Ana Embryol 1999; 199: 99-112.
36. Monnikes H, Ruter J, KonigM et al. Differential induction of c-fos expression in brain nuclei by noxious and nonnoxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain 2003; 966: 253–64.
37. Nichols K. et al., Histochemical localization of nitric oxide-synthesizing neurons and vascular sites in the guinea-pig intestine. Neuroscience 1992; 51: 791-9.
38. N. Weidner, A. Blesch, R.J. Grill, M.H. Tuszynski. Nerve growth factor–hypersecreting schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. The Journal of Comparative Neurology 1999; 413: 495–506.
39. Olle Korsgren, Leif Jansson, Eva Ekblad, and Frank Sundler. Reinnervation of syngeneic pancreatico-duodenal grafts in rats. Transplantation 2001; 71: 8-13.
40. Paola Paggi et al. Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush. Journal of Neuropathology and Experimental Neurology 2004; 63(2): 138-150.
41. Patricia T. Mann • John B. Furness. Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell Tissue Res 1999; 297: 241–248.
42. P. R. Wade & T. Cowen. Neurodegeneration: a key factor in the ageing gut. Neurogastroenterol Motil 2004; 16 (Suppl. 1): 19-23.
43. R. A. North. 30 years on. Neurogastroenterol Motil 2004; 16 (Suppl. 1): 1–2.
44. Rende M, Giambanco I, Buratta M, Tonali P. Axotomy induces a different modulation of both low-affinity nerve growth factor receptor and choline acetyltransferase between adult rat spinal and brainstem motoneurons. J Comp Neurol. 1995; 363(2): 249-63.
45. Rexed, B. A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 1954; 100: 297–379.
46. Robert J. Phillips, Elizabeth A. Baronowsky, Terry L. Powley. Regenerating vagal afferents reinnervate gastrointestinal tract smooth muscle of the rat. The Journal of Cnmparative Neurology 2000; 421: 325-346.
47. Robert J. Phillips, Elizabeth A. Baronowsky, Terry L. Powley. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. The Journal of Comparative Neurology 2003; 455: 222-37.
48. R. Schicho et al. Gastric enteric neurons that respond to luminal injury. Neurogastroenterol Motil 2004; 16(Suppl. 1): 129-132.
49. Shadiack A M, Sun Y, Zigmond R E. Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosci. 2001; 21(2): 363-71.
50. Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson HA, Devor M. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol. 1999 Sep; 28(9):743-61.
51. Stam R, Ekkelenkamp K, Frankhuijzen A C, Bruijnzeel A W, Akkermans L M, Wiegant V M. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. Gastroenterology 2002; 123: 1216–25.
52. Stanislava Jergova and Dasa Cizkova. Long-term changes of c-Fos expression in the rat spinal cord following chronic constriction injury. European Journal of Pain 2005; 9: 345–354.
53. Tomita R, Fujisaki S, Park E, Kimizuka K. Physiologic studies on nitric oxide in rat small bowel isografts. World J Surg. 2003 Jun; 27(6):734-40.
54. Traub R J, Silva E, Gebhart G F, Solodkin A. Noxious colorectal distention induced c-Fos protein in limbic brain structures in the rat. Neuroscience 1996; 215: 165–8.
55. Wakabayashi Y, Maeda T, Aimi Y, Kwok Y N. Increase of low-affinity neurotrophin receptor p75 and growth-associated protein-43 immunoreactivities in the rat urinary bladder during experimentally induced nerve regeneration. J Urol. 1998; 160(4): 1513-7.
56. William R. Lariviere. The bee venom test: comparisons with the formalin test and with injection of different venoms. Pain 2000; 84: 111-112.
57. W.Wang, P. M. Salvaterra, S. Loera, and A. Y. Chiu. Brain-Derived Neurotrophic Factor Spares Choline Acetyltransferase mRNA Following Axotomy of Motor Neurons in Vivo. Journal of Neuroscience Research 1997; 47: 134–143.
58. Xiang-Yu Liu et al. Changes of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by bee venom-induced inflammatory pain. Neuroscience Letters 2005; 375: 42–46.
59. Yamada M, Terayama R, Bando Y, Kasai S, Yoshida S. Regeneration of the abdominal postganglionic sympathetic system. Neurosci Res. 2006; 54(4): 261-8.
60. Young-Bae Kwon et al. Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of a2 adrenoceptors. Neuroscience Letters 2001; 308: 133-137.
61. Zhonghua Shao Shang Za Zhi. Histochemical study on the nitric oxide synthase in the intestinal myenteric plexus of burned rats. 2000 Dec; 16(6):343-5.
62. Z.S. Li, J.B. Furness. Immunohistochemical localization of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 1998; 294: 35-43.
63. Z. S. Li and J. B. Furness. Inputs from intrinsic primary afferent neurons to nitric oxide synthase-immunoreactive neurons in the myenteric plexus of guinea pig ileum. Cell Tissue Res 2000; 199: 1-8.
64. Z. S. Li, T. D. Pham, H. Tamir, J. J. Chen, and Gershon. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. The Journal of Neuroscience 2004; 24(6): 1330-1339.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw