進階搜尋


 
系統識別號 U0026-0812200912092683
論文名稱(中文) 中孔洞碳材之合成及應用
論文名稱(英文) Synthesis and Application of Mesoporous Carbons
校院名稱 成功大學
系所名稱(中) 化學系專班
系所名稱(英)
學年度 94
學期 2
出版年 95
研究生(中文) 陳世冠
研究生(英文) Shih-Guan Chen
學號 l3793103
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 口試委員-何瑞文
指導教授-林弘萍
口試委員-鄧熙聖
中文關鍵字 碳管  磁性  親水性  氧化矽  矽酸鈉  有機模板  聚乙二醇  中孔洞碳材  高分子混掺  金屬氧化物  碳化  保溫材料  奈米複合材料    介尺度結構  竹炭  酚醛樹脂  乙炔  磷酸  氯化鈣  F127  磷酸鈣  氫氟酸  氬氣  碳纖 
英文關鍵字 carbon spheres  carbon nanotubes  phenolic formaldehyde resin  organic template  poly ethylene glycol  F127  mesoporous carbon  mesostructured  carbon nanofibers  nanocomposite  argon  nanohybrid  polymer blend  sodium silicate  carbonization  acetylene  magnetism  hydrophilic  solar absorbance  bamboo carbon  metal oxides  H3PO4hydrochloric  calcium phosphate  hydrofluoric  blending time  CaCl2  silica  PF  PEG  SiO2 
學科別分類
中文摘要 本研究利用高分子混掺方法,以「酚醛樹脂-聚乙二醇」(PF-PEG)為有機模板,矽酸鈉為氧化矽(SiO2)來源,在pH值大約為5.0,藉由PF-PEG與SiO2之間的氫鍵作用力,自組成具介尺度結構之「PF-PEG-SiO2」奈米複合體,最後在氮氣下高溫碳化得到「氧化矽-碳」奈米複合材料。
我們將氧化矽-碳複合材料直接應用在保溫碳材。當適當的矽酸鈉溶液含量及碳化溫度所製作出來的氧化矽-碳複合材料,蓄熱比竹炭快,保溫則與竹炭相當。此外,因製程簡單,故可大量生產以取代竹炭,成為新的保溫材料。
將氧化矽-碳複合材料移除氧化矽之後,得到具有高表面積、良好孔洞性與孔洞體積之中孔洞碳材。當此碳材載入金屬氧化物,在氮氣或氬氣環境下,經過500~900 ℃處理,金屬氧化物利用碳材上的碳而還原成金屬,而且此碳材除了保持原有親水性,更具有磁性。當碳材在乙炔/氬氣環境下,溫度大於700 ℃,金屬氧化物與乙炔反應在碳球表面生成碳管或碳纖,成功得到高導電性「碳管-中孔洞碳材」複合材料。
最後,同樣利用高分子混掺方法,以「酚醛樹脂-F127」(PF-F127)為有機模板,經過適當時間混掺,結合氯化鈣和磷酸,控制溶液之pH值,即產生「酚醛樹脂-F127-磷酸鈣」複合體沉澱。碳化後再用鹽酸將無機物移除,就可成功得到具有表面積1000 m2/g以上與孔洞體積2.0 cm3/g以上之薄膜狀中孔洞碳材,改善了以傳統氧化矽材料為模板製作碳材過程中需用氫氟酸移除氧化矽的缺點。



英文摘要 In this thesis, mesostructured “phenolic formaldehyde resin -poly ethylene glycol-silica” (PF-PEG-SiO2) nanohybrid was synthesized by using PF-PEG polymer blend as organic template and sodium silicate as silica source. At pH  5.0, the silica species and PEG-PF polymer blend can mutually assembly through the hydrogen-bonding interaction. After carbonization at high temperature under Nitrogen atmosphere, a “silica-carbon” nanocomposite was obtained.
The Silica-Carbon composite can be used directly in the application of solar absorbance. The silica-carbon nanocomposite prepared with a proper amount of sodium silicate solution and carbonization temperature shows better heat absorbing efficiency and similar heat releasing rate related to bamboo carbon. Because of the simple synthetic process, the silica-carbon nanocomposite can be easily synthesized in a large scale that can replace the bamboo carbon to be used as a new solar absorbance material.
After removed silica part of the silica-carbon nanocomposite, a mesoporous carbon with high surface area and large pore volume was obtained. When a proper amount of metal oxides were loaded onto the surface of the mesoporous carbon, and then treated at 500 - 900 ℃ under inert gas environment, a hydrophilic “metal@carbon” material with magnetism can be synthesized via a reduction procedure of the metal oxides by the carbon. When the metal oxide loaded onto the mesoporous carbon was treated at above 700 ℃ in acetylene / argon, the metal oxide can catalyze the growth of the carbon nanofibers or nanotubes on the surfaces of the mesoporous carbon spheres. Thus, a good electric conducting “carbon nanotube-mesoporous carbon” composite can be readily prepared.
In the last part, “PF-F127-calcium phosphate” hybrid was also synthesized by using F127 and PF blend as organic template. With a well control on the blending time, the components of CaCl2 and H3PO4 and pH value, a film-like mesoporous carbon with surface area above 1000 m2/g and pore volume above 2.0 cm3/g was obtained from carbonization and inorganic template removal by using hydrochloric acid. This synthetic method can avoid the disadvantage of using highly dangerous hydrofluoric acid in the silica-removal processes.



論文目次 1. 序論 1
 1.1 孔洞材料介紹 1
  1.1.1 中孔洞氧化矽(Mesoporous Silica)材料簡介 1
  1.1.2 中孔洞碳材(Mesoporous Carbon)簡介 2
  1.1.3 孔洞性氧化矽材料的研究範疇 3
 1.2 界面活性劑性質簡介 6
  1.2.1 界面活性劑的分類 6
  1.2.2 微胞的形成 8
  1.2.3 界面活性劑聚集體的結構 10
  1.2.4 塊狀高分子的微胞 11
 1.3 矽酸鹽的基本概念 12
  1.3.1 pH值小於2.0時的矽酸鹽的聚合反應 (Ⅰ區) 12
  1.3.2 pH值介於2~7之間的矽酸鹽的聚合反應 (Ⅱ區) 13
  1.3.3 pH值在7以上的矽酸鹽的聚合反應 (Ⅲ區) 13
 1.4 高分子混摻(polymer blends) 14
  1.4.1 高分子混摻的概念。 14
  1.4.2 混摻的方法 14
 1.5 多孔性碳材的製造 16
  1.5.1 模板法製造多孔性碳材 16
  1.5.2 高分子混摻方式合成中孔洞碳材 18
 1.6 奈米碳管 20
  1.6.1 起源 20
  1.6.2 奈米碳管結構 22
  1.6.3 奈米碳管的合成 23
  1.6.4 奈米碳管的各種性質 24
  1.6.5 奈米碳管元件與應用 25
 1.7 動機與目的 26
  1.7.1 保溫碳材 27
  1.7.2 磁性與導電性中孔洞碳材 28
  1.7.3 「酚醛樹脂-F127(或PEG)-磷酸鈣」複合體製作中孔洞碳材 29
2. 實驗 31
 2.1 化學藥品 31
 2.2 合成方法 32
  2.2.1 保溫碳材 32
  2.2.2 磁性與導電性中孔洞碳材 33
  2.2.3 「酚醛樹脂-F127(或PEG)-磷酸鈣」複合體製作中孔洞碳材 35
 2.3 產物的鑑定 36
  2.3.1 熱重分析儀 (Thermogravimetn’c analysis;TGA ) 36
  2.3.2 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;PXRD) 36
  2.3.3 穿透式電子顯微鏡(Transmission Electron Microscopy ;TEM) 37
  2.3.4 氮氣等溫吸附/脫附測量 (N2 adsorption/desorption isotherm) 38
  2.3.5 拉曼光譜(Raman Spectrum) 40
  2.3.6 紅外線影像測溫儀 41
3. 結果與討論 43
 3.1 保溫碳材 43
  3.1.1 高分子混摻方式合成「氧化矽-碳」複合材料 43
  3.1.2 碳化溫度的影響 44
  3.1.3 氧化矽含量的影響 46
 3.2 磁性與導電性中孔洞碳材 48
  3.2.1 中空圓球狀中孔洞碳材之合成 48
  3.2.2 影響中空圓球狀中孔洞碳材表面積及孔洞大小之因素 50
  3.2.3 工業級矽酸鈉溶液測試 52
  3.2.4 磁性中孔洞碳材 53
  3.2.5 高導電性「碳管-中孔洞碳材」複合材料 60
 3.3 「酚醛樹脂-F127(或PEG)-磷酸鈣」複合體製作中孔洞碳材 65
  3.3.1 「酚醛樹脂-PEG-磷酸鈣」複合體製作之中孔洞碳材 65
  3.3.2 PF-PEG-磷酸鈣製作之碳材不同合成條件的探討 69
  3.3.3 「酚醛樹脂-F127-磷酸鈣」複合體製作之中孔洞碳材 71
  3.3.4 PF-F127-磷酸鈣製作之碳材不同合成條件的探討 74
4. 結論 81
5. 參考資料 83
參考文獻 1. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
4. A. Sayari, Chem. Mater., 1996, 8, 1840.
5. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
6. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
7. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
8. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
9. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
10. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
11. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
12. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
13. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
14. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
15. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun. 1995, 1617.
16. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
17. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
18. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
19. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
20. T. Kyotani, Carbon 2000, 38, 269.
21. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin ,I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
22. Solovyov L. A.; Zaikovskii V. I.; Shmakov A. N.; Belousov O. V.; Ryoo R., J. Phys. Chem. B 2002, 106, 12198-12202.
23. Kruk M.; Jaroniec M.; Kim T.-W.; Ryoo R. Chem. Mater. 2003, 15, 2815-2823.
24. Lee J.; Han S. ; Hyeon T. J. Mater. Chem. 2004, 14, 478-486.
25. Jun S.; Joo S. H.; Ryoo R.; kruk M.; Jaroniec M.; Liu Z.; Ohsuna T.; Terasaki O. J. Am. Chem. Soc. 2002, 122, 10712-10713
26. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
27. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
28. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
29. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
30. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
31. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
32. T. Kyotani, Carbon 2000, 38, 269.
33. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
34. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
35. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
36. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
37. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
38. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
39. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004, 16, 1756-1762.
40. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
41. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
42. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
43. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
44. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
45. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
46. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
47. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
48. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
49. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
50. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
51. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. , 2002, 14, 1144.
52. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
53. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin. J. Phys. Chem. B., 2001, 105, 7963
54. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater., 2002, 12, 2448.
55. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
56. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 , 951.
57. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. , 2000, 48, 289.
58. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
59. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
60. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
61. Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application; Wilcox, Sr., D. L., Berg, M., Bernat, T., Kellerman, D., Cochran, J. K., Jr., Eds.; MRS Proceedings, Vol. 372; Materials Research Society: Pittsburgh, PA, 1995.
62. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
63. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453.
64. Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028-2029.
65. Huo, Q. S.; Feng, J. L.; Schu¨th, F.; Stucky, G. D. Chem. Mater.1997, 9, 14-17.
66. Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J. Nature 1999, 398, 223-226.
67. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649-652.
68. S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
69. N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
70. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 2002, 41, 1543 .
71. T. F. Todros, Surfactants, Academic Press : London, 1984.
72. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
73. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
74. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
75. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
76. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
77. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3
78. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
79. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
80. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
81. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
82. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
83. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
84. R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki, manuscript in preparation.
85. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
86. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
87. S. Iijima, Nature 1991, 354 , 56.
88. Rice University:Rick Smalley's Group Home Page-Image Gallery.
89. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B 2000, 104, 2794.
90. S Amelinckx et. al. Electron diffraction and microscopy of nanotubes, pp-1475~1477.
91. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, "Graphite Fibers and Filaments"chapter 2.
92. P. J. F. Harris, Carbon Nanotubes and Related Structure, Cambridge University Press:New York, 1990.
93. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998 , 391, 59.
94. A. Thess, R. Lee, P. Nikolaev, H. Dai. P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
95. S. Frank, P. Poncharal, Z. L. Wang, W. A. De Heer, Science 1998 , 280, 1744.
96. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 1998, 58, 14013.
97. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678.
98. http://140.114.18.223/~hcshih/diamond/nanotube.html(2000)
99. 馬廣仁 工業材料雜誌 179期, 90年11月。
100. 丁傑 化工資訊 25期, 2000年8月。
101. 洪凱炫、陳柏豪 科學新知vol. 89 , 2001, 9。
102. 天下雜誌, 2001。
103. Ferdi Schüth, Chem. Mater. 2001, 13, 3184-3195.
104. Chun-Yi Chang-Chien, Chun-Han Hsu, Hong-Ping Lin, J Porous Mater. (2006) 13: 205-209
105. Chun-Han Hsu, Hong-Ping Lin, Materials Chemistry and Physics (accepted 5 December 2005)
106. Cheol Jin Lee, Jeunghee Park and Jeong A. Yu, Chemical Physics Letters 360 (2002) 250–255.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw