進階搜尋


 
系統識別號 U0026-0812200912090645
論文名稱(中文) 纖維母細胞生長因子-9在人類子宮頸及子宮頸癌之表現及其作用之研究
論文名稱(英文) Study on the expression and function of FGF-9 in human cervix and cervical cancer
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 94
學期 2
出版年 95
研究生(中文) 王萍嫻
研究生(英文) Ping-Hsien Wang
電子信箱 s3692405@ccmail.ncku.edu.tw
學號 s3692405
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 口試委員-蔡少正
指導教授-周振揚
指導教授-陳麗玉
中文關鍵字 纖維母細胞生長因子-9  子宮頸  子宮頸癌 
英文關鍵字 FGF-9  human cervix  cervical cancer 
學科別分類
中文摘要 纖維母細胞生長因子-9又稱做神經膠質激活因子,最初是由神經膠質瘤細胞中純化而來的。它的接受器有4種,分別是FGFR1,FGFR2,FGFR3和FGFR4。FGFR1-FGFR3分別有: b 型以及c 型。纖維母細胞生長因子-9的接受器主要是FGFR2IIIc以及FGFR3IIIc。研究顯示,生長因子和它的接受器的不正常表現在一些腫瘤細胞中扮演著一個重要的角色。由於子宮頸癌是國人婦女惡性腫瘤發生率排名第二位的疾病,所以我的研究主要是探討纖維母細胞生長因子-9在子宮頸細胞以及癌細胞的表現。在本研究中,我分別取正常的子宮頸組織以及子宮頸癌組織抽取其蛋白質,利用西方墨點法的技術來偵測纖維母細胞生長因子-9的表現。實驗結果發現,在正常的子宮頸基質組織中有纖維母細胞生長因子-9的表現, 但是在正常的子宮頸上皮組織中纖維母細胞生長因子-9的表現量非常少。在子宮頸癌組織中亦發現有纖維母細胞生長因子-9的表現。聚合酶連鎖反應的方式偵測纖維母細胞生長因子-9接受器(FGFR)的結果顯示,正常的子宮頸上皮細胞只有表現 b 型的FGFR2 以及FGFR3,正常的子宮頸基質細胞主要表現 FGFR2IIIc和FGFR3IIIc,然而在子宮頸癌細胞株(CX)中,不只可以偵測到b 型的FGFR,也可以偵測到 FGFR3IIIc的表現。纖維母細胞生長因子-9的處理時會刺激正常的子宮基質細胞以及子宮頸癌細胞的增生。MEK以及PI3K的抑制劑可抑制經由纖維母細胞生長因子-9所引起細胞的增生及 Akt 與ERK 的磷酸化。這些結果顯示纖維母細胞生長因子-9的處理所刺激的細胞增生主要是透過ERK以及PI3K這些細胞訊息傳遞路徑。根據以上結果我們推論,子宮頸基質細胞可分泌FGF-9 並促進本身之增生;當上皮腫瘤細胞FGFR isoform的表現改變,使其可以接受腫瘤本身或是鄰近基質細胞所分泌的FGF-9刺激而造成細胞不正常的增生。
英文摘要 Fibroblast growth factor-9 (FGF-9) also called Glia-activating factor (GAF), is a heparin-binding growth factor originally purified from the human glioma cell line. There are different subtypes of fibroblast growth factor receptor(FGFR). FGFR1-3 undergoes alternative splicing and generates b and c types of variants. FGF-9 has high binding affinity to FGFR2IIIc and FGFR3IIIc. Studies have shown that the inappro-priate expression of FGF-9 and its recep-tors may play an important role in the growth of tumors. Cervical cancer is the second most common cancer in women worldwide. In this study, I have investigated the expression and function of FGF-9 in human cervix and cervical cancer. The results of Western blot show that FGF-9 was expressed in the normal cervix stromal tissue but not in epithelial tissue. Cervical cancer tissue expressed higher levels of FGF-9 than that in normal cervical epithelial tissues. The expression of subtypes of FGFR in normal cer-vical epithelial cells and cervical cancer cells were also analyzed by RT-PCR. Normal cervical epithelial cells expressed “b” type of FGFR2 and FGFR3. Stromal cells expressed FGFR2IIIc and FGFR3IIIc. CX cells expressed not only “b” type of FGFR but also FGFR3IIIc. FGF-9 stimu-lated proliferation of stromal cells and cervical cancer CX cells. MEK and PI3K
inhibitors blocked FGF-9-induced cell proliferation and phosphorylation of AKT and ERK, indicating that these signal pathways are involved in the mitogneic action of FGF-9. All together, our result suggests that cervical stromal cells secrete FGF-9 that may in turn stimulate their own proliferation. The alte-ration of FGFR subtypes in cervical cancer cells may lead to cellular response to FGF9 which is produced from the tumor or adjacent stromal cells.
論文目次 中文摘要......................................................................3
ABSTRACT......................................................................4
I.INTRODUCTION...............................................................8
I.1 FIBROBLAST GROWTH FACTOR (FGF) AND FIBROBLAST GROWTH FACTOR
RECEPTOR (FGFR)........................................................8
I.2 FIBROBLAST GROWTH FACTOR 9 (FGF-9)....................................11
I.3 THE HUMAN CERVIX......................................................12
I.4 CERVICAL CANCER.......................................................13
THE PURPOSE OF THE STUDY.....................................................16
II.MATERIAL AND
METHODS...................................................................17
TISSUE COLLECTION.........................................................17
CELL CULTURE..............................................................17
ISOLATION OF TOTAL RNA....................................................19
PROTEIN EXTRACTION AND WESTERN BLOT.......................................21
STATISTICAL ANALYSIS......................................................22
ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA).................................22
3H-THYMIDINE INCORPORATION................................................23
III.RESULTS..................................................................24
PART 1. EXPRESSION OF FGF-9 IN NORMAL CERVICAL TISSUES AND CERVICAL CANCER
TISSUES...........................................................24
PART 2. EXPRESSION OF FGFR SUBTYPES IN NORMAL CERVICAL CELLS AND CERVICAL
CANCER CELLS......................................................24
PART 3. SECRETION AND ACTION OF FGF-9 IN CERVICAL STROMAL CELLS...........25
PART 4. THE ACTION OF FGF-9 ON CERVICAL CANCER CELL LINES.................25
IV. DISCUSSION...............................................................27
V. REFERENCES..............................................................44
VI. APPENDIX.................................................................49
ABOUT THE AUTHOR.............................................................56

參考文獻 1.Szebenyi G, Fallon JF: Fibroblast growth factors as multifunctional
signaling factors. Int Rev Cytol 1999, 185:45-106.
2.Itoh N, Ornitz DM: Evolution of the Fgf and Fgfr gene families. Trends Genet
2004, 20:563-569.
3.Liu J, Huang C, Zhan X: Src is required for cell migration and shape
changes induced by fibroblast growth factor 1. Oncogene 1999, 18:6700-6706.
4.Eswarakumar VP LI, Schlessinger J. : Cellular signaling by fibroblast
growth
factor receptors. Cytokine Growth Factor Rev 2005, 16:139-149.
5.Davies BR, Fernig DG, Barraclough R, Rudland PS: Effect on tumorigenicity
and metastasis of transfection of a diploid benign rat mammary epithelial
cell line with DNA corresponding to the mRNA for basic fibroblast growth
factor. Int J Cancer 1996, 65:104-111.
6.Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D: Involvement of heparan
sulfate and related molecules in sequestration and growth promoting
activity of fibroblast growth factor. Cancer Metastasis Rev 1996, 15:177-
186.
7.Stringer SE, Gallagher JT: Heparan sulphate. Int J Biochem Cell Biol 1997,
29:709-714.
8.Powers CJ, McLeskey SW, Wellstein A: Fibroblast growth factors, their
receptors and signaling. Endocr Relat Cancer 2000, 7:165-197.
9.Heldin CH: Dimerization of cell surface receptors in signal transduction.
Cell 1995, 80:213-223.
10.Hart KC, Robertson SC, Donoghue DJ: Identification of tyrosine residues in
constitutively activated fibroblast growth factor receptor 3 involved in
mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation.
Mol Biol Cell 2001, 12:931-942.
11.Klint P C-WL: Signal transduction by fibroblast growth factor receptors.
Front Biosci 1999 Feb 15;4:D165-77 1999, 4:D165-177.
12.Doherty P, Walsh FS: CAM-FGF Receptor Interactions: A Model for Axonal
Growth. Mol Cell Neurosci 1996, 8:99-111.
13.Dailey L, Ambrosetti D, Mansukhani A, Basilico C: Mechanisms underlying
differential responses to FGF signaling. Cytokine Growth Factor Rev 2005,
16:233-247.
14.Vanhaesebroeck B AD: The PI3K-PDK1 connection: more than just a road to
PKB. Biochem J 2000 Mar 15;346 Pt 3:561-76 2000, 346:561-576.
15.Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T: Molecular
cloning of a novel cytokine cDNA encoding the ninth member of the
fibroblast growth factor family, which has a unique secretion property. Mol
Cell Biol 1993, 13:4251-4259.
16.Mattei MG, Penault-Llorca F, Coulier F, Birnbaum D: The human FGF9 gene
maps to chromosomal region 13q11-q12. Genomics 1995, 29:811-812.
17.Mattei MG, De Moerlooze L, Lovec H, Coulier F, Birnbaum D, Dickson C: Mouse
fgf9 (fibroblast growth factor 9) is localized on chromosome 14. Mamm
Genome 1997, 8:617-618.
18.Song J, Slack JM: XFGF-9: a new fibroblast growth factor from Xenopus
embryos. Dev Dyn 1996, 206:427-436.
19.Tagashira S, Ozaki K, Ohta M, Itoh N: Localization of fibroblast growth
factor-9 mRNA in the rat brain. Brain Res Mol Brain Res 1995, 30:233-241.
20.Miyake A, Konishi M, Martin FH, Hernday NA, Ozaki K, Yamamoto S, Mikami T,
Arakawa T, Itoh N: Structure and expression of a novel member, FGF-16, on
the fibroblast growth factor family. Biochem Biophys Res Commun 1998,
243:148-152.
21.Kirikoshi H, Sagara N, Saitoh T, Tanaka K, Sekihara H, Shiokawa K, Katoh M:
Molecular cloning and characterization of human FGF-20 on chromosome 8p21.3-
p22. Biochem Biophys Res Commun 2000, 274:337-343.
22.Nakamura S, Todo T, Motoi Y, Haga S, Aizawa T, Ueki A, Ikeda K: Glial
expression of fibroblast growth factor-9 in rat central nervous system.
Glia 1999, 28:53-65.
23.Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM: Male-to-female sex
reversal in mice lacking fibroblast growth factor 9. Cell 2001, 104:875-889.
24.Giri D RF, Ittmann M.: FGF9 is an autocrine and paracrine prostatic growth
factor expressed by prostatic stromal cells. J Cell Physiol 1999, 180:53-60.
25.Jin C, Wang F, Wu X, Yu C, Luo Y, McKeehan WL: Directionally specific
paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two- compartment premalignant prostate tumors. Cancer Res 2004, 64:4555-4562.
26.Tsai SJ, Wu MH, Chen HM, Chuang PC, Wing LY: Fibroblast growth factor-9 is
an endometrial stromal growth factor. Endocrinology 2002, 143:2715-2721.
27.Yin Y, Ma L: Development of the mammalian female reproductive tract. J
Biochem (Tokyo) 2005, 137:677-683.
28.Walker DC, Brown BH, Blackett AD, Tidy J, Smallwood RH: A study of the
morphological parameters of cervical squamous epithelium. Physiol Meas
2003, 24:121-135.
29.Lee HY ZS, Fields PA, Sherwood OD. : The extent to which relaxin promotes
proliferation and inhibits apoptosis of cervical epithelial and stromal
cells is greatest during late pregnancy in rats. Endocrinology 2005,
146:511-518.
30.Ciocca DR, Puy LA, Lo Castro G: Localization of an estrogen-responsive
protein in the human cervix during menstrual cycle, pregnancy, and
menopause and in abnormal cervical epithelia without atypia. Am J Obstet
Gynecol 1986, 155:1090-1096.
31.Konishi I, Fujii S, Nonogaki H, Nanbu Y, Iwai T, Mori T:
Immunohistochemical analysis of estrogen receptors, progesterone receptors,
Ki-67 antigen, and human papillomavirus DNA in normal and neoplastic
epithelium of the uterine cervix. Cancer 1991, 68:1340-1350.
32.Horn LC, Hentschel B, Bilek K, Richter CE, Einenkel J, Leo C: Mixed small
cell carcinomas of the uterine cervix: prognostic impact of focal
neuroendocrine differentiation but not of Ki-67 labeling index. Ann Diagn
Pathol 2006, 10:140-143.
33.Benedet JL, Odicino F, Maisonneuve P, Beller U, Creasman WT, Heintz AP,
Ngan HY, Sideri M, Pecorelli S: Carcinoma of the cervix uteri. J Epidemiol
Biostat 2001, 6:7-43.
34.Seedorf K, Oltersdorf T, Krammer G, Rowekamp W: Identification of early
proteins of the human papilloma viruses type 16 (HPV 16) and type 18 (HPV
18) in cervical carcinoma cells. Embo J 1987, 6:139-144.
35.Stenzel A, Semczuk A, Rozynskal K, Jakowicki J, Wojcierowski J: "Low-risk"
and "high-risk" HPV-infection and K-ras gene point mutations in human
cervical cancer: a study of 31 cases. Pathol Res Pract 2001, 197:597-603.
36.Huibregtse JM, Beaudenon SL: Mechanism of HPV E6 proteins in cellular
transformation. Semin Cancer Biol 1996, 7:317-326.
37.Zhang B, Chen W, Roman A: The E7 proteins of low- and high-risk human
papillomaviruses share the ability to target the pRB family member p130 for
degradation. Proc Natl Acad Sci U S A 2006, 103:437-442.
38.Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ: HPV-mediated cervical
carcinogenesis: concepts and clinical implications. J Pathol 2006, 208:152-
164.
39.M. S: Ubiquitin, E6-AP, and their role in p53 inactivation. Pharmacol Ther
1998, 78:129-139.
40.Chou CY, Chen YH, Tzeng CC, Cheng YC, Chang CF, Chen TM: Establishment and
characterization of a human-papillomavirus negative, p53-mutation negative
human cervical cancer cell line. Cancer Lett 1996, 102:173-181.
41.Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, Chou CY: Insulin-like growth
factor 1 is a potent stimulator of cervical cancer cell invasiveness and
proliferation that is modulated by alphavbeta3 integrin signaling.
Carcinogenesis 2006, 27:962-971.
42.Zheng J, Saksela O, Matikainen S, Vaheri A: Keratinocyte growth factor is a
bifunctional regulator of HPV16 DNA-immortalized cervical epithelial cells.
J Cell Biol 1995, 129:843-851.
43.Wu R, Connolly D, Ngelangel C, Bosch FX, Munoz N, Cho KR: Somatic mutations
of fibroblast growth factor receptor 3 (FGFR3) are uncommon in carcinomas
of the uterine cervix. Oncogene 2000, 19:5543-5546.
44.Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR: Fibroblast
growth factor 9 has oncogenic activity and is a downstream target of Wnt
signaling in ovarian endometrioid adenocarcinomas. Cancer Res 2006, 66:1354-
1362.
45.Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, Johnston C:
Altered intracellular localization of fibroblast growth factor receptor 3
in human breast cancer. J Pathol 2001, 194:27-34.
46.Wu X, Jin C, Wang F, Yu C, McKeehan WL: Stromal cell heterogeneity in
fibroblast growth factor-mediated stromal-epithelial cell cross-talk in
premalignant prostate tumors. Cancer Res 2003, 63:4936-4944.
47.Todo T, Kondo T, Kirino T, Asai A, Adams EF, Nakamura S, Ikeda K, Kurokawa
T: Expression and growth stimulatory effect of fibroblast growth factor 9
in human brain tumors. Neurosurgery 1998, 43:337-346.
48.Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G,
Goldfarb M: Receptor specificity of the fibroblast growth factor family. J
Biol Chem 1996, 271:15292-15297.
49.del Moral PM, De Langhe SP, Sala FG, Veltmaat JM, Tefft D, Wang K,
Warburton D, Bellusci S: Differential role of FGF9 on epithelium and
mesenchyme in mouse embryonic lung. Dev Biol 2006, 293:77-89.
50.Zieger K, Dyrskjot L, Wiuf C, Jensen JL, Andersen CL, Jensen KM, Orntoft
TF: Role of activating fibroblast growth factor receptor 3 mutations in the
development of bladder tumors. Clin Cancer Res 2005, 11:7709-7719.
51.Rosty C, Aubriot MH, Cappellen D, Bourdin J, Cartier I, Thiery JP, Sastre-
Garau X, Radvanyi F: Clinical and biological characteristics of cervical
neoplasias with FGFR3 mutation. Mol Cancer 2005, 4:15.
52.Masih-Khan E TS, Heise C, Li Z, Paterson J, Nadeem V, Wei E, Roodman D,
Claudio J, Bergsagel L, Stewart AK. : MIP-1{alpha} (CCL3) is a Downstream
Target of FGFR3 and RAS/MAPK Signaling in Multiple Myeloma. Blood 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw