進階搜尋


 
系統識別號 U0026-0812200912074708
論文名稱(中文) 探討紫杉醇在人類口腔癌細胞株所誘導細胞凋亡之訊息傳遞路徑
論文名稱(英文) The signaling pathway of taxol-induced apoptosis in human oral cancer cell line
校院名稱 成功大學
系所名稱(中) 細胞生物及解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 94
學期 2
出版年 95
研究生(中文) 藍宇彥
研究生(英文) Yu-Yan Lain
電子信箱 yyinmed@yahoo.com.tw
學號 t9693103
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-黃步敏
指導教授-蕭振仁
口試委員-江美治
中文關鍵字 紫杉醇  細胞凋亡  硫胱氨酸蛋白脢  絲裂原活化蛋白激酶 
英文關鍵字 Taxol  OEC-M1 cells  apoptosis  caspase  JNK 
學科別分類
中文摘要 紫杉醇 (taxol) 目前已知是一種有效的抗癌藥物, 其可以抑制很多癌症細胞的生長及誘導細胞走向細胞凋亡。在臨床上,紫杉醇已經被證實可以用來治療多種頭頸部癌症。雖然紫杉醇可以誘導頭頸部癌症細胞走向細胞凋亡,但是其詳細的調控機制仍然是不清楚的。而了解紫杉醇在不同癌症細胞所誘導的細胞凋亡調控機制對於臨床中在癌症藥物的選擇治療上是一重要的資訊。在我們之前的研究已經證實紫杉醇可以誘導 OEC-M1 癌症細胞走向細胞凋亡,其中硫胱氨酸蛋白脢 (caspase-3, -6, -7, -8 和-9)及絲裂原活化蛋白激酶家族中的 JNK 被活化, 而 poly (ADP-ribose) polymerases (PARP)則失去活性。在目前的研究中,我們證實以紫杉醇處理 OEC-M1 細胞後,Fas 相關死亡結構域蛋白 (FADD) 會被磷酸化,並且 Bid也會被切割。另外,以 SP600125 (JNK 抑制劑) 與紫杉醇合併處理 OEC-M1 細胞,發現 JNK 的磷酸化及硫胱氨酸蛋白脢(caspase-8, -9, -3, -6 和-7) 的活化都明顯的被抑制,並且 JNK 抑制劑也抑制由紫杉醇所誘導的細胞凋亡,並且抑制粒線體膜電位的改變。總結之,在紫杉醇所誘導的 OEC-M1 細胞凋亡的過程中,JNK參與caspase-8的活化,並且藉由切割的Bid而將粒線體調控路徑連結。


英文摘要 Taxol (paclitaxel) is a potent anticancer agent known to inhibit cell growth and to trigger significant apoptosis in various cancer cells. In clinical therapy, taxol acts as a chemotherapeutic agent against many kinds of head and neck cancers. Although taxol can induce the apoptosis of head and neck cancers, its exact mechanism remains elusive. The exact mechanism of taxol-induced apoptosis in different cancer cell lines is important information that can be used in clinical to select anti cancer drug for chemotherapy of cancer. Herein, the possible mechanism of taxol-induced apoptosis in human head and neck cancer cell line is being investigated. Previous data in our lab have shown that activation of caspase-8, -9, -3, -6, -7, JNK and the cleavage of PARP were involved in taxol-induced OEC-M1 cancer cells apoptosis. Present data illustrated that the phosphorylation of FADD and cleavage of Bid occurred in taxol-treated OEC-M1 cells. Furthermore, SP600125 (JNK inhibitor) cotreated with taxol significantly inhibited JNK phosphorylation and cleavage of caspase-8, -9, -3, -6 and -7. JNK inhibitior also decreased the rate of apoptosis and inhibited the mitochondrial membrane potential change in taxol-treated cells. In conclusion, JNK might contribute to the activation of caspase-8 and the cleavage of Bid, which could cross link the mitochondria pathway in taxol-treated OEC-M1 cells.


論文目次 ABSTRACT
English…………………………………………………………….......i
Chinese………………………………………………………………..i i
INTRODUCTION……………………………………………………1
MATERIALS AND METHODS…………………………………….13
Chemicals…………………………………………………………….13
Cells and cell culture…………………………………………………13
Immunoblotting Analysis…………………………………………….14
Apoptosis analysis by Flowcytometry……………………………......15
Annexin V/ Propidium Iodide Staining………………………………15
Cytofluorimetric Analysis of Mitochondrial Transmembrane Potential (ΔΨm)………………………………………………………………...16
Statistics………………………………………………………………16
RESULTS
Taxol induced apoptosis and necrosis in OEC-M1 cells………….......17
Taxol induced FADD phosphorylation in OEC-M1 cells……………17
Taxol induced cleavage of Bid expression in OEC-M1 cells………...18
Taxol-induced apoptosis is associated with decreased mitochondrial membrane potential (ΔΨm)…………………………………………...18
SP600125 inhibits taxol-induced apoptosis…………………………..19
SP600125 decreases the cell viability in OEC-M1 cells……………...20
SP600125 inhibits taxol-induced phosphorylation of JNK……………20
SP600125 inhibits taxol-induced cleaved of initiator caspases…….....21
SP600125 inhibits taxol-induced cleaved of effector caspases…….....21
Caspase-8 and caspase-9 inhibitor inhibit taxol-induced apoptosis, respectively…………………………………………………………..22
Combination of caspase-8 and caspase-9 inhibitor treatment decreased the taxol-induced apoptosis……………………………………………...23
Caspase-8 inhibitor inhibits taxol-induced cleavage of caspase-8, -3, -6 and -7…………………………………………………………………….24
Caspase-9 inhibitor inhibits taxol-induced cleavage of caspase-8, -3, -6 and -7……………………………………………………………………..25
SP600125 inhibits taxol-induced depolarization of mitochondrial membrane potential (Δψm)……………………………………………………….26
DISCUSSION………………………………………………………..27
REFERENCES……………………………………………………….34
FIGURES…………………………………………………………….44
About the author……………………………………………………...87
參考文獻 Amos LA, Lowe J. How taxol stabilises microtubule structure. Chem Bio. 6:65-69, 1999.
Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 256:50-57, 2000.
Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 345:271-278, 2000.
Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 281:1305-1308, 1998.
Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR, Bleackley RC. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol. 20:3781- 3794, 2000.
Brichese L, Cazettes G, Valette A. JNK is associated with Bcl-2 and PP1 in mitochondria: paclitaxel induces its activation and its association with the phosphorylated form of Bcl-2. Cell Cycle. 3:1312-1319, 2004.
Chen YC, Huang YL, Huang BM. Cordyceps sinensis mycelium activates PKA and PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor cells. Int J Biochem Cell Biol. 37: 214-23, 2005.
Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science. 275:1122-1126, 1997.
Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A. 94:10057-10062, 1997.
Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 326:1-16, 1997.
Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N Kroemer G. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis, FEBS Lett. 476:118-123, 2000.
Desagher S, Osen SA, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 144:891-901, 1999.
Devereaux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 388:300-304, 1997.
Gagandeep S, Novikoff PM, Ott M, Gupta S. Paclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell lines. Cancer Lett. 136:109-118, 1999.
Gan Y, Wientjes MG, Schuller DE, Au JL. Pharmacodynamics of taxol in human head and neck tumors. Cancer Res. 56:2086-2093, 1996.
Geard CR, Jones JM, Schiff PB. Taxol and radiation. J NatlCancer Inst Monogr. 15:89-94, 1999.
Gerace L, Burke B. Functional organization of the nuclear envelope, Annu. Rev. Cell Biol. 4:335–374, 1988.
Green DR, Reed JC. Mitochondria and apoptosis. Science. 281:1309-1312, 1998.
Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17:3878-3885, 1998.
Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899-1911, 1999.
Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M. Review: nuclear lamins-structural proteins with fundamental functions. J Struct Biol. 129:313-23, 2000.
Gupta S. Molecular steps of cell suicide: an insight into immune senescence. J Clin Immunol. 20:229-239, 2000.
Gupta S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 69:2957-2964, 2001.
Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR, Bleackley RC. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax, J Exp Med. 192:1391-1402, 2000.
Hua ZC, Sohn SJ, Kang C, Cado D, Winoto A. A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity. 18:513-521, 2003.
Huisman C, Ferreira CG, Broker LE, Rodriguez JA, Smit EF, Postmus PE, Kruyt FA, Giaccone G. Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin. Cancer Res. 8:596-606, 2002.
Hussein MR, Haemel AK, Wood GS. Apoptosis and melanoma: molecular mechanisms. J Pathol. 199:275-588, 2003.
Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A. 94:3668-3672, 1997.
Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53:4701-4714, 1993.
Lautier D, Hoflack JC, Kirkland JB, Poirier D, Poirier GG. The role of poly(ADP-ribose) metabolism in response to active oxygen cytotoxicity. Biochim Biophys Acta. 1221:215-220, 1994.
Lauricella M, Emanuele S, Danneo A, Calvaruso G, Vassallo B, Carlisi D, Portanova P, Vento R, Tesoriere G. JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis. 11:607-625, 2006.
Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 371:346-7, 1994.
Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94:491-501, 1998.
Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med. 33:79-86, 2004.
Madesh M, Antonsson B, Srinivasula SM, Alnemri ES, Hajnoczkym G. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem. 277:5651-5659, 2002.
Meng CL, Yang CY, Shen KL, Wong PY, Lee HK. Inhibition of the synthesis of eicosanoid-like substances in a human oral cancercell line by interferon-gamma and eicosapentaenoic acid. Arch Oral Biol. 43:979-86, 1998.
Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem. 278:5367-5376, 2003.
Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem. 276:18361-18374, 2001.
Mullan PB, Quinn JE, Gilmore PM, McWilliams S, Andrews H, Gervin C, McCabe N, McKenna S, White P, Song YH, Maheswaran S, Liu E, Haber DA, Johnston PG, Harkin DP. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene. 20:6123-6131, 2001.
Murphy KM, Streips UN, Lock RB. Bcl-2 inhibits a Fas-induced conformational change in the Bax N terminus and Bax mitochondrial translocation. J Biol Chem. 275:17225-17228, 2000.
Nechushtan A, Smith CL, Hsu YT, Youle RJ. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 18: 2330-2341, 1999.
Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028-42, 1999.
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 139:271-9, 1991.
Nguyen M, Branton PE, Walton PA, Oltvai ZN, Korsmeyer SJ, Shore GC. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem. 269:16521-16524, 1994.
Oei S, Griesenbeck J, Schweiger M. The role of poly(ADP-ribosyl) ation. Rev Physiol Biochem Pharmacol. 131:121-173, 1997.
Ofir R, Seidman R, Rabinski, T, Krup M, Yavelsky V, Weinstein Y, Wolfson M. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 9:636-642, 2002.
Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem. 273:33533-9, 1998.
Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem. 271:16443-6, 1996.
Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol. 135:1441-55, 1996.
Rodi DJ, James RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L. Screening of a library of phage-displayed peptides identifies human Bcl-2 as a taxol-binding protein. J Mol Biol. 285:197-203, 1999.
Sarig R, Zaltsman Y, Marcellus RC, Flavell R, Mak TW, Gross A. BID-D59A is a potent inducer of apoptosis in primary embryonic fibroblasts. J Biol Chem. 278:10707-10715, 2003.
Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME. Phosphorylation of FADD/MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol. 164: 1236-1242, 2000.
Shall S, de Murcia G. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model. Mutat Res. 460:1-15, 2000.
Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Kishi M, Konishi1 N. Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. Carcinogenesis. 25:1089-1097, 2004
Slee EA, Adrian C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 276:7320-7326, 2001.
Stone AA, Chambers TC. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp Cell Res. 254:110-119, 2000.
Stuurman N, Heins S, Aebi U. Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. 122:42-66, 1998.
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441-446, 1999.
Tibbetts MD, Zheng L, Lenardo MJ. The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol. 5:404-409, 2003.
Tishler RB, Geard CR, Hall EJ, Schiff PB. Taxol sensitizes human astrocytoma cells to radiation. Cancer Res. 52:3495-3497, 1992.
Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 281:1312-1316, 1998.
Tournier C, Hess P, Yang DD. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 288:870-874, 2000.
Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci U S A. 93:4974-4978, 1996.
Wani MC, Taylor HL, Wall MC, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, anovel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93:2325-2327, 1971.
Wang LG, Liu XM, Kreis W, Budman DR. The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol. 44:355-361, 1999.
Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T, Wimalasena J. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem. 273:4928-4936, 1998.
Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 88:2619-2628, 2000.
Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT. Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood. 97:1378-1387, 2001.
Wood DE, Newcomb EW. Cleavage of Bax enhances its cell death function. Exp. Cell Res. 256:375-382, 2000.
Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science. 275:1129-1132, 1997.
Yan Zhang, Hai Lu, Paul Dazin, Yvonne Kapila. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J Biol Chem. 279:48342-48349, 2004.
Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell. 1:319-325, 1998.
Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature. 400:886-891, 1999.
Yu C, Minemoto Y, Zhang J. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Molecular Cell. 13:329-340, 2004
Yoo YD, Park JK, Choi JY, Lee KH, Kang YK, Kim CS, Shin SW, Kim YH, Kim JS. CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells. Clin Cancer Res. 4:3063-3068, 1998.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw