進階搜尋


 
系統識別號 U0026-0812200912072769
論文名稱(中文) 即時人臉驗證演算法及PDA照相手機之嵌入式系統實現
論文名稱(英文) Real-time Face Verification Algorithm and Embedded System Implementation for PDA Camera Phone
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 鄭志成
研究生(英文) Zhi-Cheng Zheng
學號 n2693427
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 口試委員-王獻章
口試委員-戴顯權
指導教授-王駿發
中文關鍵字 人臉驗證  混合主成分分析 
英文關鍵字 Face Verification  CPCA 
學科別分類
中文摘要   近年來,隨著科技進步日新月異,以生物特徵為基礎的個人身份驗證技術變得日益重要。因此本論文提出一套即時的人臉驗證系統。此系統可以應用到門禁管制、保全監控、互動服務等系統中。此驗證系統主要可以分成兩個部分,一部分為人臉偵測,另一部份為人臉驗證。
  在人臉偵測的部分,首先會對輸入影像做皮膚顏色的偵測找出可能的人臉候選人。然後根據人臉眼睛的對稱性以及其距離比例去求出臉部特徵的位置。因此可以將我們有興趣的臉部範圍擷取下來而避免掉沒有臉部特徵的其它背景。為了減少光線的影響以及達到即時運算的效果,我們會針對所擷取的臉部特徵範圍先做正規化的處理再利用混合主成分分析去做人臉的驗證。
最後我們還將此系統實現在PDA的照相手機上做即時的使用者人臉偵測與驗證。由此可證明我們的演算法是可以達到即時運算的效能並應用在手持裝置上。



英文摘要   With the improvement of science and technology, the techniques of personal authentication based on biological feature become more and more important in recent years. In the thesis, we propose a real-time face verification system. The system can be applied to a security monitoring, doorway intercom and interactivity service, etc. The verification system consists of two parts: one is face detection and the other is face verification.
  In the part of face detection, we detect the skin color of the input image to locate the face candidates. Then based on the symmetry property of eyes, we can locate the positions in which the facial features lie in. So we can get the square margin of the face which we are interested in without considering the other background. To reduce the influence of illumination and achieve the real-time requirement, we deal the image with normalization before we verify the face image using composite principal component analysis.
  Finally, we implement our proposed real-time face detection and verification algorithm on PDA camera phone. Hence, it can prove our proposed algorithm to be real-time on hand-held device.



論文目次 摘要..........................................i
Abstract......................................ii
誌謝..........................................iii
Contents......................................iv
Figure List...................................vi

Chapter 1. Introduction........................1
1.1 Background.................................1
1.2 Motivation.................................2
1.3 Thesis Organization........................3
Chapter 2. Related Works.......................4
2.1 Review of Face Detection...................4
2.1.1 Low-Level Analysis.......................4
2.1.2 Feature Analysis.........................7
2.1.3 Active Shape Models......................9
2.1.4 Image-Based Approach.....................11
2.2 Review of Face Verification................13
2.2.1 Karhunen-Loeve Transform.................14
2.2.2 Linear Discriminant Analysis.............16
2.2.3 Support Vector Machines..................17
Chapter 3. Real-time Face Verification Algorithm......................................20
3.1 Face Detection System Flow.................20
3.1.1 Lighting Compensation....................22
3.1.2 Skin Color Detection.....................24
3.1.3 Morphological Opening....................28
3.1.4 Connected Components Labeling............29
3.1.5 Modified Enhancement of Facial Features..31
3.1.6 Modified Valley Detection Filter.........34
3.2 Real-time Face Verification System Flow....35
3.2.1 Normalization............................36
3.2.2 Composite Principal Component Analysis...37
3.2.3 K-Nearest Neighbor.......................40
Chapter 4. Experimental Results................41
Chapter 5. Embedded System Implementation for PDA Camera Phone...............................45
5.1 Introduction to Our Embedded System........45
5.2 Our Proposed Algorithm on Embedded System..45
5.3 The Experimental Results for PDA Camera Phone..........................................47
Chapter 6. Conclusion and Future Work..........49
References.....................................50

參考文獻 [1] T. Sakai, M. Nagao, and T. Kanade, Computer analysis and classification of photographs of human faces, in Proc. First USA -- Japan Computer Conference, 1972, p. 2.7.
[2] I. Craw, H. Ellis, and J. R. Lishman, Automatic extraction of face-feature, Pattern Recog. Lett. Feb. 1987, 183 – 187.
[3] C. Wong, D. Kortenkamp, and M. Speich, A mobile robot that recognizes people, in IEEE Int. Conf. on Tools with Artificial Intelligence, 1995.
[4] G. Yang and T. S. Huang, Human face detection in a complex background, Pattern Recog. 27, 1994, 53 – 63.
[5] C. H. Lee, J. S. Kim, and K. H. Park, Automatic human face location in a complex background, Pattern Recog. 29, 1996, 1877 – 1889.
[6] Y. Dai and Y. Nakano, Face-texture model based on SGLD and its application, Pattern Recog. 29, 1996, 1007 – 1017.
[7] L. Yang, Multiple-face tracking system for general region-of-interest video coding, in Proceedings of the 2000 International Conference on Image Processing, 2000, p. MA09.13.
[8] L. Yin and A. Basu, Integrating active face tracking with model based coding, Pattern Recog. Lett. 20, 1999, 651 – 657.
[9] J. L. Crowley and F. Berard, Multi-model tracking of faces for video communications, in IEEE Proc. of Int, Conf. on Computer Vision and Pattern Recognition, Puerto Rico, Jun. 1997.
[10] Y. Li, J. Kittler and J. Matas, “On Matching Scores of LDA-based Face Verification,” Proceedings of British Machine Vision Conference, London, UK, vol. 1, pp. 42 -- 51, 2000.
[11] L. C. De Silva, K. Aizawa, and M. Hatori, Detection and tracking of facial features by using a facial feature model and deformable circular template, IEICE Trans. Inform. Systems E78-D(9), 1995, 1195 – 1207.
[12] S. H. Jeng, H. Y. M. Liao, C. C. Han, M. Y. Chern, and Y. T. Liu, Facial feature detection using geometrical face model: An efficient approach, Pattern Recog. 31, 1998.
[13] M. C. Burl and P. Perona, Recognition of planar object classes, in IEEE Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 6, 1996.
[14] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: active contour models, in Proc. of 1st Int Conf. on Computer Vision, London, 1987.
[15] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, Feature extraction from faces using deformable templates, Int. J. Comput. Vision 8, 1992, 99 – 111.
[16] A. Lanitis, C. J. Taylor, and T. F. Cootes, Automatic tracking, coding and reconstruction of human faces, using flexible appearance models, IEEE Electron. Lett. 30, 1994, 1578 – 1579.
[17] L. Sirovich and M. Kirby, Low-dimensional procedure for the characterization of human faces, J. Opt. Soc. Amer. 4, 1987, 519 – 524.
[18] P. Juell and R. Marsh, A hierarchical neural network for human face detection, Pattern Recog. 29, 1996, 781 – 787.
[19] H. A. Rowley, S. Baluja, and T. Kanade, Neural network-based face detection, IEEE Trans. Pattern Anal. Mach. Intell. 20, January 1998, 23 – 38.
[20] E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to face detection, in IEEE Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 6, 1997.
[21] K. Pearson, “On line and planes of closest fit to systems of points in space”, Philosophy Magazine, 2, Page(s): 559 – 572, 1901.
[22] H. Hotelling, “Analysis of a complex of statical variables into principal components”, Journal of Educational Psychology, 24, Page(s): 417 – 441, 498 – 520, 1933.
[23] I. T. Jolliffe, “Principal Component Analysis”, Springer-Verlag, 1986.
[24] M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve procedure for the characterization of human faces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, 1990.
[25] K. Etemad and R. Chellappa, “Face recognition using discriminant eigenvectors”, Proceedings of International Conference on Acoustics, Speech and Signal Processing, Page(s): 2148 – 2151, 1996.
[26] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, Page(s): 711 – 720, 1997.
[27] Rein-Lien Hsu, Mohamed Abdel-Mottaleb, and Anil K. Jain, “Face Detection in Color Image”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, May 2002.
[28] Christophe Garcia, and Georgios Tziritas, “Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis”, IEEE Transactions on Multimedia, vol. 1, no. 3, September 1999.
[29] Rafael C. Gonzalez, Richard E. Woods., “Digital Image Processing.” Prentice-Hall, Inc. (2002).
[30] Soriano, M., Huovinen, S., Martinkauppi, B., and Laaksonen, M. 2000. Skin detection in video under changing illumination conditions. In Proc. 15th International Conference on Pattern Recognition, vol. 1, 839 – 842.
[31] Shi-Hong Jeon, Hong Yuan Mark Lio, Chin Chuan Han, M. Yang Chern, and Yao T. Liu, “Facial feature detection using geometrical face model : An efficient approach”, Pattern Recognition, Vol.31, No.3, pp.273 – 282, 1998.
[32] R.-S. Wang, Y. Wang, “Facial Feature Extraction and Tracking in Video Sequences” Multimedia Signal Processing, 1997., IEEE First Workshop on, 23 – 25 Jun 1997 Page(s): 233 – 238.
[33] Fix, E., Hodges, J., 1951. Discriminatory analysis: Nonparametric discrimination: Consistency properties, Tech. Rep. 4, USAF School of Aviation Medicine, February.
[34] Seow, M.J., Gottumukkal, R., Valaparla, D., Asari, K.V., “A Robust Face Recognition System for Real Time Surveillance” ITCC 2004 Vol.1, Page(s): 631 – 635.
[35] A.M. Martinez and R. Benavente. The AR Face Database. CVC Technical Report #24, June 1998.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw