進階搜尋


 
系統識別號 U0026-0812200912065510
論文名稱(中文) 磁性離子交換樹脂(MIEX)對有機物錯合鐵去除之探討
論文名稱(英文) Investigation of the removal efficiency of organic complexed iron by Magnetic Ions Exchange Resin (MIEX)
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 洪文隆
研究生(英文) Wen-Long Hong
學號 p5692121
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-葉宣顯
口試委員-黃良銘
口試委員-宋孟浩
中文關鍵字 錯合鐵  腐植酸  水楊酸  磁性離子交換樹脂 
英文關鍵字 humic acid  complexed iron  MIEX  saliccylic acid 
學科別分類
中文摘要 台灣離島之金門、澎湖等地區部分淨水廠之原水含有高量之有機物質,原水中存在過量有機物時,可能與淨水處理程序中所加入之氯反應生成三鹵甲烷等類消毒副產物(DBP)。為解決此一問題,水廠把加氯點往處理程序之後端移動,減少氯與前質接觸時間,以解決THM問題,但卻可能因為氯與鐵接觸時間不足,而引發紅水現象。可能之原因為有機物與鐵離子錯合,降低淨水程序對鐵之去除效率。本研究係以對去除溶解性有機物有極高處理效率之磁性離子交換樹脂MIEX為研究對象,探討其對有機物錯合鐵之去除情形。
首先比較火焰原子吸收光譜儀(AA)及比色法對鐵之偵測,結果顯示比色法須在實驗室進行加酸加熱之前處理才能測得總鐵含量,且AA偵測出來的數據較接近實際值,故後續實驗皆以AA偵測水中溶解性鐵量。
水楊酸為一含羧基與羥基之簡單有機物,可與過渡金屬鐵錯合,且錯合後會呈現紫色。首先以XAD-2樹脂證實水楊酸錯合鐵原水中,AA所測得的溶解性鐵裡錯合鐵所佔之比例。後續探討pH值、水楊酸濃度與Fe+3濃度對水楊酸錯合鐵生成量之影響。結果顯示pH 4下,水楊酸與鐵的錯合飽和量應約為水楊酸:鐵 = 2:1 之比例。pH超過5以後鐵幾乎全部形成Fe(OH)3(s)沉澱,而pH低於4,水樣中的錯合鐵佔溶解性鐵的比例會逐漸降低,且實測結果與以錯合常數及matlab計算所得之理論值相當接近。
MIEX會隨濃度或pH值的變化而對水楊酸有不同的去除效果,故研究中控制不同pH 值(2、3、4、5、6、7) 及MIEX劑量(2 ml/L、4 ml/L、6 ml/L、8 ml/L、10 ml/L)來探討不同實驗參數對去除率之影響。去除效率隨MIEX劑量而增加,MIEX劑量10 ml/L 時可達14.58%左右。pH值越低則去除效果越差,小於pH 2時,去除率相當低,此乃因水楊酸在低pH值時,官能基未解離而不帶負電,因而無法與MIEX進行陰離子交換,而達到去除之目的。接下來以MIEX去除與鐵錯合之水楊酸,發現MIEX不僅可去除水楊酸,在此同時也可一併去除與水楊酸錯合之鐵。且水楊酸有無與鐵錯合,並不影響MIEX對其之去除率。
進一步延伸到腐植酸與腐植酸錯合鐵,實驗方式與水楊酸相同,但發現MIEX對腐植酸的去除率在加藥量同樣為10 ml/L下,卻有接近50%的去除率,推測這是因為MIEX對腐植酸之去除,除了依靠離子交換反應,也會由凡得瓦爾力的吸附而去除。而在去除腐植酸錯合鐵方面,MIEX對與腐植酸錯合之鐵一樣可達到去除效果,且腐植酸與鐵錯合與否,亦不影響MIEX對腐植酸的去除。



英文摘要 The amount of organic matters in some of the source water for public water supply is significant in the offshore islands of Taiwan, such as Kinmen and Penghu. An excess of organic contaminants will cause the formation of disinfection by-products (DBPs) through reacting with chlorine in the water treatment process. In order to inhibit the generation of THMs, some water treatment plants avoid prechlorination to reduce the contact time between chlorine and precursors. However, it may cause the red water problem owing to the low efficiency of iron removal. A possible reason is that the iron is in organic complexed form, which is difficult to remove if the reaction between chlorine and organic complexed iron is insufficient. This research focuses on the removal efficiency of organic complexed iron by magnetic ions exchange resin (MIEX), which is mainly for NOM(natural organic matter) removal.
Iron can be analyzed by both flame atomic absorption spectrometry (AA) and spectrophotometer.However, the results show that pretreatment is necessary for the latter and the data obtained by AA is closer to the real value. Therefore, most of the dissolved iron measurement in this study was conducted by AA.
Salicylic acid is a simple organic compound, which contains carboxyl and hydroxyl groups; and it may react with transition metal iron to form complex with purple color. XAD-2 resin was need to confirm the ratio of salicylic acid complexed iron in the raw water. Then the effect of pH value, the concentration of salicylic acid, and ferric ion on the amount of complexed iron was stadied.The results show that the ratio of salicylic acid and iron in the complex was 2:1 at pH 4. When pH value was greater than 5, almost all iron turned into ferric hydroxide precipitate. Under pH4, the ratio of complexed iron and total dissolve iron decreased with the pH value, and the results from chemical analysis were near to the theoretical value calculated by Matlab.
The removal efficiency of salicylic acid by MIEX might be affected by concentration and pH value. Therefore, the removal efficiency under different pH (2~7) and MIEX dosage (2ml/L~10ml/L) was investigated.The results show the removal efficiency increase with MIEX dosage. It can be up to about 14.58% at 10 ml/L MIEX dosage. The removal efficiency decreased with pH value, was quite low under pH 2.The explanation is:as the pKa1 of salicylic acid is 2.81, so the functional groups would not ionize and be unable to proceed ions exchange with MIEX. Then MIEX was need to remove salicylic acid which complex with iron, and found that MIEX can remove both free and iron-complexed salicylic acids. The removal efficiency of salicylic acid would not be affected by the existence of iron.
Finally, the removal of humic acid and himic acid complexed iron by MIEX was also studied. The removal efficiency of humic acid by MIEX was about 50% higher than that of salicylic acid, at dosage 10ml/L. Proobably because the removal of humic acid was by absorption on to MIEX dose to van der Waals force as well as ions exchange reaction. MIEX can remove iron which was complexed with humic acid. The removal efficiency of humic acid was also not be affected by the existence of iron.



論文目次 摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
照片目錄 XI
第一章、前言 1
1.1、研究緣起 1
1.2、研究範疇 2
第二章、文獻回顧 3
2.1、自然水體中有機物分類及性質 3
2.1.1、自然水體中有機物之來源 3
2.1.2、给水中有機物對公共给水之影響 3
2.1.3、自然水體中有機物之分類 4
2.1.4、水體中有機物之物理、化學特性 6
2.2、自然界中鐵之分布及其介紹 7
2.2.1、自然水體中鐵之來源、含量及其影響 8
2.2.2、金屬錯合物 9
2.2.3、有機物與鐵錯合之影響 10
2.2.4、腐植質對鐵去除之影響 12
2.2.5、鐵之去除 14
2.3、離子交換 15
2.3.1、離子交換之簡介 15
2.3.2、離子交換樹脂之分類及其應用 15
2.3.3、離子交換樹脂的化學反應 18
2.4、MIEX(Magnetic Ion Exchange Resin) 19
2.4.1、MIEX樹脂特性 19
2.4.2、MIEX樹脂處理程序 19
2.4.3、MIEX樹脂之應用及相關研究 21
第三章、實驗材料、程序及方法 23
3.1、研究內容 23
3.2 實驗設計與流程之規劃 23
3.3、MIEX樹脂取得 24
3.4、有機物錯合鐵實驗藥品 26
3.5、管柱貫穿實驗 29
3.5.1、XAD-2樹脂之清洗 29
3.5.2、管柱實驗裝置 29
3.5.3、管柱實驗 30
3.6、MIEX處理 33
3.7、非揮發性溶解性有機碳(Non-Purgable Dissolved Organic Carbon, NPDOC)之分析 34
3.8、pH值 35
3.9、鐵的分析方法 35
3.9.1、火焰式原子吸收光譜儀 35
3.9.2、比色法 Phenanthroline Method 36
3.9.2.1、Phenanthroline Method 36
3.9.2.2、Bathophenanthroline Method 36
第四章、結果與討論 39
4.1、鐵分析方法之比較 39
4.2、水楊酸錯合鐵 42
4.2.1、水楊酸錯合鐵之理論錯合值 42
4.2.2、pH值、水楊酸濃度與Fe+3濃度對水楊酸錯合鐵生成量之影響 49
4.2.3、以XAD-2證實水中所含之溶解性鐵為錯合鐵 53
4.2.4、 MIEX對水楊酸去除效率 54
4.2.5、 MIEX 在不同pH值下對水楊酸去除效果 55
4.2.6、MIEX對水楊酸錯合鐵之去除情形 56
4.3、腐植酸錯合鐵 59
4.3.1、MIEX樹脂對人工配製腐植酸原水去除情形 59
4.3.2、以XAD-2確認所配製之含腐植酸及鐵之溶液中錯合鐵所佔比例 61
4.3.3、 MIEX樹脂對人工配製腐植酸錯合鐵去除情形 62
4.3.3.1、pH=3下MIEX樹脂對人工配製腐植酸錯合鐵去除情形 62
4.3.3.2、pH=7.5下MIEX樹脂對人工配製腐植酸錯合鐵去除情形 64
4.3.3.3、pH=10.5下MIEX樹脂對人工配製植酸錯合鐵去除情形 66
4.4、有機物與鐵錯合與否對MIEX去除有機物之影響 67
第五章、結論與建議 71
5.1、結論 71
5.2、建議 72
參考文獻 73
附錄 A、檢量線 83
附錄 B 87
參考文獻 參考文獻
Adriano, D. C.(1992), “Biogeochemistry of Trace Metals”, Lewis Publishers, Boca Raton, pp.429-496

Adriano, D. C. and Cheng, Z. S. and Yang, S. S.(1997)”Biogeochemistry of Trace Metals”, Science Reviews, Northwood, U.K., pp.403-432

Aiguo L. and Richard D. G.(1999), “Adsorption/Desorption in a System Consisting of Humic Acid, Heavy Metals, and Clay Minerals”, Journal of Colloid and Interface Science, Volume 218, Issue 1, pp.225-232

Alarcon-Herrera, M. T. and Bewtra, J. K. and Biswas, N.(1994), “Seasonal Variations in Humic Substances and Their Reduction Through Water Treatment Process”, Can.J. Civ. Engr., Vol .21, pp.173-179

American Water Works Association(1999), “Water Quality and Treatment , 5th ed.” , Letterman, R.D.(editor), McGraw-Hill, New York, pp.9.1-9.91

American Water Works Association(2003), “Water treatment, 3rd ed”, American Water Works Association, pp.295-311& pp.363-376

Amy, G. and Cho, J.(1992), “Interactions between Natural Organic Matter(NOM) and Membrane:Rejection and Fouling”, Wat. Sci. Tech, Vol.40, No.9, pp.131-139

Ashley, J. T. F.(1996), “Adsorption of Cu(II) and Zn(II) by Estuarine, Riverine and Terrestrial Humic Acids”, Chemosphere, Volume 33, Issue 11, pp.2175-2187

Bourke, M., Harrison, S., Long, B. and Lebeau, T. (2001), “MIEX Resin Pretreatment Followed by Microfiltration as an Alternative to Nanofiltration for DBP Precursor Removal”, Proceedings of AWWA Membrane Technology Conference.

Braester, S. S.(1988), “Eulerian-Lagrangian Formulation of the Equations for Groundwater Denitrification Using Bacterial Activity”, Advances in Water Resources, Vol.11, Issue 4, pp.162-169

Breland, E. D. and Robinson, L. R. (1967) “Iron and Manganess Removal from Low Alkalinity Groundwaters” Report to the Water Resources Research Institute, Mississippi Stata University.

Byler, D. M.,Gerasimowicz W. V., Susi, H. and Schnitzer M.(1987), “FT-IR of Soil Contituents:Fulvic Acid and Fulvic Complex with Feric Ions”, Society for Applied Spectroscopy,Vol. 41, No. 8, pp.1428-1430

Cadee, K., O’Leary, B., Smith, P., Slunjski, M. and Bourke, M. (2000), “World’s First Magnetic Ion Exchange (MIEX®) Water Treatment Plant to be Installed in Western Australia”, Proceeding of AWWA Conference, Denver, USA.

Cheng, W. P.(2002), “Coagulation Mechanisms of Iron Salt and Salicylic Acid”, Separation Science and Technology, Vol.37, No.9, pp.2113-2127

Christman R. F., Norwood D. L., Seo Y. and Frimmel F. H. (1989) Oxidative Degradation of Humic substances from Freshwater Environments. Humic Substances II in Search of Structure, M. H. B. Hayes, P. MacCarthy ﹠ R.L. Malcolm, eds., John Wiley & Sons, Chchester.

Cook, D., Chow, G. and Drikas, M.(2001), “Laboratory Study of Conventional Alum Treatment versus MIEX Treatment for Removal of Natural Organic Matter”, Proceedings of the 19th Federal AWA Convention, Canberra, Australia.

Cromely, J. T. and O’Connor, J. T.(1976), “Effect of Ozonation on the Removal of Iron from a Groundwater”, Jour. AWWA, Vol.68, No.6, pp.315-319.

Donald S. G.., Schnitzer, M. and Kerndorff, H. and Langford, C. H.(1983), “Multiple metal ion exchange equilibria with humic acid”, Geochimica et Cosmochimica Acta, Volume 47, Issue 7, pp.1311-1323

Hiraide, M., Arima, Y. and Mizuike, A.(1987), “Separation and Determination of Traces of Heavy Metals Complexed with Humic Substances in River Waters by Sopertion on Indium-Treated Amberlite XAD-2 Resin”, Analytica Chimica Acta, vol.200, pp.171-179

Jobin, R. and Ghosh, M. M. (1972) "Effect of Buffer Intensity and Organic Matter on the Oxygenation of Ferrous Iron," Jour. AWWA, Vol. 64, No. 7, pp.590-596.

Knocke, W. R., Shorney, H. L. and Bellamy, J(1993), “Impacts of Dissolved Organic Carbon on Iron Removal”, AWWA Reasearch Foundation and American Water Works Association, U.S.A.

Kodama, H., Schnitzer M. and Murad,E.(1988), “An Investigation of Iron(Ⅲ)-Fulvic Acid Complexes by Mössbauer Spectroscopy and Chemical Methods”, Soil Sci. Soc. Am. J.,Vol. 52, pp.994-998

Lange, R., Tattersall, J., Botica, C. and Smith, P. (2001) “Design and Construction of the World’s First Large Scale MIEX® Water Treatment Plant”, Proceedings of the 19th Federal AWA Convention, Canberra, Australia

Langlias, B., Reckhow D. A. and Brink, D.R.(1991),” Ozone in Water Treatment: Application and Engineering”, Chelseu, Mich: Lewis Publishers.

Martell, E. and Smith, R.M.(1974), “Critical Stability Constants Volume 3: Other Organic Ligands”, Plenum Press, New York, pp.186-188

MacCarthy, P., DeLuca, S. J., Voorhees, K. J., Malcolm, R. L. and Thurman, E. M.(1985), “Pyrolysis-Mass Spectrometry/Pattern Recognition on A Well-Characterized Suite of Humic Samples”, Geochimica et Cosmochimica Acta, Volume 49, Issue 10, pp.2091-2096

Margon, J. J.(1967) Chemical quilibria and Kinetic Properties of Manganess in Natural Water, Proc. 4th. Rudolfs Conference, Principles and Application of Water Chemistry, New York, pp.561-624

Morran J. Y., Bursill D. B. and Drikas M.(1996), “A New Technique for Removal of Natural Organic Matter”.,AWWA Watertec Convention, Nguyen H.V

Nordell, E.(1961) Water Treatment 2th ed., Reinhold, New York.

O’Connor, J., Hash, L. and Edwards, A. B.(1975), “Deterioration of Water Quality in Distribution System”, Jour. AWWA, Vol.67, No.3, pp.113-120.

Oldham, W. F. and Gloyna, E. F. (1969), “Effect of Colored Organics on Iron Removal”, Jour. AWWA, Vol. 61, No. 11, pp.610.

Owens, D. L.(1995), “Practical Principles of Ion Exchange Water Treatment”, Ch3 The importance of water analysis to ion exchange, Tall Oaks Pub, Littleton, Co ,pp.9-21

Reynolds, T. D.(1982), “Unit operations and processes in environmental engineering”, Brooks/Cole, Engineering Division, Monterey

Schnitzer, M. (1976), “The Chemistry of Humic Substances”, Environmental Biogeochemistry , J. D. Nragus (editor), Vol.1, Ann Arbor Science, Ann Arbor, Michgan

Schnitzer, M. & Kerndorff, H.(1980) ,”Sorption of Metal on Humic Acid ,”Geochimia et Cosmochimia Acta ,Vol.44, pp.1701-1708

Schnitzer, M. & Kerndorff, H.(1981) ,”Reaction of Fulvic Acid with Metal Ions ,”Water , Air and Soil Pollution ,Vol.15, No.97

Schulten, H. R. and Schnitzer, M.(1993), “Temperature-Resolved In-Source Pyrolysis-Soft Ionization Mass Spectrometry of Soil Humic Acids”, Org. Geochem., Vol.20, No.1, pp.17-25

Senesi, N., Griffith, M. and Schnitzer, M, “Binding of Fe3+ by Humic Materials”, Geochimica et Cosmochimica Acta, Volume 41, Issue 7, pp.969-976

Shapiro, J. (1964), “Effect of Yellow Organic Acids on Iron and Other Metals in Water”, Jour. AWWA, Vol. 56, No. 8, pp.1062.

Shaw, J. N.(1966), “College Chemistry”, Ch16 Coordination Chemistry, Merrill, Columbus

Slunjski, M., Bourke M., and Nguyen, H.-Orica Watercare(1999), “ MIEX® DOC Process - A New Ion Exchange Process”, 18th Federal Convention, Australian Water & Wastewater Association, Proceedings 11-14 April 1999, Adelaide Australia.

Slunjski, M., Bourke, M. and O’Leary, B. (2000a), “MIEX® DOC Process for Removal of Humics in Water Treatment”, presented at IHSS (International Humic Substances Society)-Australia Chapter Seminar.

Slunjski, M., Cadee, K. and Tattersall, J. (2000b), “MIEX® Resin Water Treatment Process”, Proceedings of Aquatech Amsterdam, September, Amsterdam, the Netherlands.

Slunjski, M., Nguyen, H., Ballard, M., Eldridge, R., Morran, J., Drikas, M., O’Leary, B., and Smith, P. (2002), “MIEX®-Good Research Commercialised”, Water (Journal of the Australian Water Association), Vol. 29, No. 2, pp. 42~51.

Stevenson, F. J.(1976) “Binding of Metal Ions by Humic Acid”, Nragus, J. D.(editor),Environmental Biogeochemistry, vol.1 ,Ann Arbor Science , Ann Arbor , Michgan .

Stumm, W. and Lee, G. F. (1961), “Oxygenation of Ferrous Iron”, Ind. And Engr. Chem., Vol.53, No.2, pp.143-146

Stumm, M. and Morgan, J. J.(1996), “Aquatic chemistry 3rd ed”, Wiley, New York, pp.326 & pp.372
Sugimura, Y., Suzuki, Y. and Miyake, Y.(1978), “The Dissolved Organic Iron in Seawater”,Deep-Sea Reasearch, Vol. 25, pp.309-314

Theis, T. L. and Singer, P. C. (1974), “Complexation of Iron(Ⅱ) by Organic Matter and It’s Effect on Iron(Ⅱ) Oxygenation” Environ. Sci., Vol.8, No.6, pp.569-574.

Thurman, E. M. and Malcolm, R.L. (1981) "Preparative Isolation of Aquatic Humic Substances," Environ. Sci. & Technol., Vol. 15, pp.463-466.

Thurman, E. M. (1985), “Organic Geochemistry of Nature Water”, M. Nijhoff, Dr. W. Junk Publishers, Dordrecht, the Netherlands, pp.15-17.

Wightman, P. G. and Fein, J. B.(2001), “Ternary Interaction in a Humic Acid-Cd-Bacteria System”, Chemical Geology, Volume 180, Issues 1-4, pp.55-65

Windholz, M., Budavari, S., Blumetti, R. F., Otterbei, E. S.(1983)” The Merck Index 10th ed.”, Merck & Co., Inc, pp.8189

Zacheus, O. M, Lehtola, M. J, Korhonen, L. K., Martikainen, P. J.(2001), “ Soft deposits, the key site for microbial growth in drinking water distribution networks” Water Res., vol.35, No.7, pp.1757–1765

Peter A. Rock, Georger A. Gerhold (1980), “化學原理與應用”, 潘家寅譯, 第19章 過渡金屬之配位化學, 科技圖書股份有限公司, pp.740-813
Dickerson, R. E.,Gray, H. B., Haight, G. P. (1973), “化學原理”, 潘家寅譯, 台灣中華書局, pp.384-386 & pp.476-533

William L. Masterton, Cecile N. Hurley (2002), “普通化學”, 洪耀釧,陳世晞,孫逸民,莊尊仁,王豐益等編譯, 第15章 錯離子, 新加坡商亞洲湯姆生國際出版公司出版, 滄海發行, pp.465-490

葉宣顯(2004), “自來水品質管理,”財團法人中興工程科技研究發展基金會, pp.18-21

陳靜生(1992), “水環境化學”, 曉園出版社

華彤文等(2002), “普通化學原理”, 帝14章 配位化合物, 五南圖書, pp.497-541

石清揚(1996), “環境化學概論”, 第二章 水的化學, 臺灣復文興業股份有限公司, pp.31-40

陶金華, 邱承美(1981), “有機化學”, 科文出版社,pp.473-494

吳振成,田憲儒,陳義雄,卓靜哲,葉茂榮,郭建志(1981), “普通化學”, 第七章 酸、鹼、離子化合物溶液和氧化還原, 狀元出版社, pp.189-193

井出哲夫(1989), “水處理工程 理論與應用 下冊”,趙洪賓,金錐,劉馨遠等譯, 第十章 離子交換, 科技圖書股份有限公司, pp.196-278.

高肈藩(1987), “給水工程自來水篇”, 成功大學環工系經銷, pp.43-47, pp.393-397

林昇衡(2004), “高總有機碳原水處理之研究”, 碩士論文, 國立成功大學環境工程研究所, 台南
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw