進階搜尋


 
系統識別號 U0026-0812200912062152
論文名稱(中文) 應用模糊控制器以增進感應馬達驅動系統解耦合控制效能之研究
論文名稱(英文) Study of Fuzzy Controller for Improving Decoupled Control Performance of Induction Motor Drives
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 94
學期 2
出版年 95
研究生(中文) 江典峰
研究生(英文) Dian-Feng Jiang
學號 n9693101
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 口試委員-黃慶連
口試委員-張永昌
指導教授-陳添智
口試委員-林清一
口試委員-黎碧煌
中文關鍵字 模糊控制器  感應馬達  解耦合控制 
英文關鍵字 fuzzy controller  decoupling control  induction motor  motor parameter estimation errors 
學科別分類
中文摘要   感應馬達由於擁有轉速穩定、結構簡單、花費低以及機械特性穩定等優點,被廣泛的應用在工業上。而解耦合控制是近年發展出的一種新控制方法,其主要想法為降低感應馬達d-q軸之間相互影響的耦合效應。本論文中提到的動態解耦合控制器是一種比起許多傳統控制器擁有更佳控制效能的解耦合控制策略,但其缺點為當控制器中所使用的馬達估測參數有誤差時,解耦合控制效能將會大幅下降。為解決此問題本論文提出了將模糊理論應用在增加解耦合控制器之控制效能的方法。

  本篇論文所提出依據模糊理論所設計出的模糊控制器其主要功用在於產生耦合補償電壓來調整由解耦合控制器產生的d-q軸電壓命令。經由適當的模糊規則與輸入/輸出的歸屬函數之選擇可以得到更好的解耦合控制效能與馬達系統響應。結合論文中所提出的解耦合加上模糊控制器以及全數位化脈寬調變演算法來產生三相電壓控制訊號給感應馬達驅動器。實作上以具定點運算功能的32位元數位訊號處理器TMS320F2812與感應馬達驅動電路來實現以上所提出的控制架構。由模擬及實作結果可證明所提出的控制方法之控制效能優於傳統的解耦合控制器。

英文摘要   The induction motor is widely utilized in industry because its advantages including stability of rotating speed, simple structure, low cost, and mechanical robustness. Decoupling control is one kind of control strategies developed in recent years for induction motor drives. Its main idea is to reduce coupling between d-q current dynamics of the induction motor. A dynamic decoupling controller mentioned in this thesis is one kind of decoupling control schemes that has better decoupling control performance than many kinds of conventional controllers. It still has disadvantage, as when there are motor parameter estimation errors, decoupling control performance would be reduced sharply. To solve this problem, application of fuzzy theorem is proposed to enhance control performance of the decoupling controller.

  The fuzzy controller generates coupling compensation voltages to adjust the voltage commands produced by the decoupling controller. Through appropriate fuzzy rules and input/output membership functions setting, better decoupling control performance and system responses can be obtained. Combining the proposed decoupling controller after fuzzy controller is added and the digitalized PWM algorithm to generate three-phase voltage control signals to the induction motor drive. A 32-bit TMS320F2812 digital signal processor and motor driver circuit are used to implement this whole control scheme. Simulation and experiment results demonstrate that the proposed control scheme is superior to the original decoupling controller.

論文目次 摘要...........................................................................I
Abstract......................................................................II
Acknowledgements.............................................................III
Contents......................................................................IV
List of Figures and Tables....................................................VI
Symbols......................................................................XII
Chapter 1 Introduction.........................................................1
1.1 Motivation...............................................................1
1.2 Outline..................................................................5
Chapter 2 The Proposed Decoupling Control Method with Compensating Fuzzy Controller.....................................................................6
2.1 Induction Motor Model....................................................6
2.2 Coupling Compensation Methods............................................8
2.2.1 Feedforward Decoupling Controller....................................8
2.2.2 Cross-Coupling Decoupling Method....................................10
2.2.3 The Dynamic Decoupling Controller...................................11
2.3 Compensating Fuzzy Controller.........................................13
2.4 Overall Control Block Diagram...........................................18
Chapter 3 Simulation and Experimental Control Program Algorithm...............20
3.1 Digitalized Pulse Width Modulation......................................20
3.1.1 Flux Linkage Vector.................................................21
3.1.2 The Frequency and Voltage Control...................................23
3.2 Simulation Program Flows................................................26
3.3 Experimental Program....................................................27
3.3.1 Fuzzy Controller Experimental Program...............................27
3.3.2 The Main Program and Other Registers’Settings......................29
3.4 Experiment Hardware Architecture........................................34
Chapter 4 Simulation and Experiment Results...................................36
4.1 Simulation Results......................................................36
4.1.1 Simulation—Constant Speed Command..................................37
4.1.2 Simulation—Changing Speed Command..................................49
4.2 Experiment Results......................................................61
4.2.1 Experiment—Constant Speed Command..................................61
4.2.2 Experiment—Changing Speed Command..................................70
Chapter 5 Conclusions.........................................................76
5.1 Conclusions.............................................................76
5.2 Suggestions.............................................................77
Reference.....................................................................79
Appendix—A...................................................................82
Vita..........................................................................88
參考文獻 [1] J. Jung and K. Nam, “A dynamic decoupling control scheme for high-speed operation of induction motors,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 1, pp. 100-101, 1999.

[2] M. M. Bech, J. K. Pedersen and F. Blaabjerg, “Field-oriented control of an induction motor using random pulse-width modulation, ” IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp. 1777-1785, 2001.

[3] Z. Krzeminski, “Nonlinear control of induction motor,” Presented at the 10th IFAC World Congress, Munich, pp. 349–354. 1987.

[4] R. Marino, S. Peresada, and P. Valigi, “Adaptive input-output linearizing control of induction motors,” IEEE Transactions on Automatic Control, Vol.38, No.2, pp. 208–221, 1993.

[5] Y. A. Chapuis, D. Roye and J. Davoine, “Principles and implementation of direct torque control by stator flux orientation of an induction motor”, in Conference Record, IEEE-IAS Annual Meeting, Vol.1, pp. 185-191, 1995.

[6] S. M. A. Cruz, A. J. M. Cardoso, “Diagnosis of stator inter-turn short circuits in DTC induction motor drives,” IEEE Transactions on Industry Applications, Vol. 40, No. 5, pp. 1349 – 1360, Sept./Oct. 2004.

[7] H. Wang, W. Xu, T. Shen and G. Yang, “Robust input-output decoupling control of induction motor,” Proceedings of the American Control Conference, Boston, pp. 1133–1134, 30 June–2 July 2004.

[8] J. Monteiro, G.. D. Marques and J. Palma, “A simplified stator flux vector control method in dq co-ordinates for induction machines,” IEEE Transactions on Industrial Electronics, Vol. 1, No. 4, pp. 271-276, 2000.

[9] M. P. Kazmierkowski and A. B. Kasprowicz, “Improved direct torque and flux vector control of PWM inverter-fed induction motor drivers,” IEEE Transactions on Industrial Electronics, Vol. 42, No. 4, pp. 344-349, 1995.

[10] EI Moucary, C. Mendes and A. Razek, “Decoupled direct control for PWM inverter-fed induction motor drives,” IEEE Transactions on Industry Applications, Vol. 38, No. 5, pp. 1307-1315, 2002.

[11] R. D. Lorenz and D. B. Lawson, “Performance of feedforward current regulators for field oriented induction machine controllers,” IEEE Transactions on Industry Application, Vol. IA-23, pp. 142–150, Jan./Feb. 1987.

[12] F. Briz, M. W. Degner, and R. D. Lorenz, “Analysis and design of current regulators using complex vectors,” in Conference Record IEEE-IAS Annual Meeting, pp. 1504–1511, 1997

[13] J. O. Pinto, B. K Bose and L. E. B da Silva, “A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks,” IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1308-1318, 2001.

[14] B. K. Bose, “Power Electronics and AC Drivers,” Englewood Cliffs, NJ: Prentice-Hall, 1986.

[15] J. Klima, “Analytical closed-form solution of a space-vector modulated VSI feeding an induction motor drive,” IEEE Transactions on Industry Applications, Vol. 17, No. 2, pp. 191-196, 2002.

[16] T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Transactions on Energy Conversion, Vol. 28, No. 5, pp. 1045-1053, 1992.

[17] S. Nonaka and Y. Neba, “A PWM GTO current source converter-inverter system with sinusoidal inputs and outputs,” IEEE Transactions on Industry Applications, Vol. 25, No. 1, pp. 76-85, 1989.

[18] Bo-Wei Shi,“Study of Decoupled Direct Control for Induction Motor Drives with Digitalized PWM,” Graduated School of Engineering Science, National Cheng-Kung University, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-08-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw