進階搜尋


 
系統識別號 U0026-0812200912053772
論文名稱(中文) 多層電極且具陣列式三維微結構之介電泳單細胞捕捉晶片
論文名稱(英文) A Dielectrophoretic Single-Cell Trapping Chip with Multiple Electrodes and Arrayed 3D Microstructures
校院名稱 成功大學
系所名稱(中) 微機電系統工程研究所
系所名稱(英) Institute of Micro-Electro-Mechancial-System Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 王凱玄
研究生(英文) Kai-Hsuan Wang
學號 q2693105
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-李永春
口試委員-蕭飛賓
口試委員-莊承鑫
中文關鍵字 介電泳  單細胞生物晶片  三維微結構 
英文關鍵字 Dielectrophoresis  3D Microstructure  Single-Cell Biochip 
學科別分類
中文摘要 本研究完成三種架構之單細胞捕捉晶片,利用微機電製程建立陣列式介電泳電極,並利用負介電泳力(Negative Dielectrophoresis force, N-DEP Force) 捕捉單一細胞於預期的位置,得以進一步進行細胞凋亡研究或是藥物篩檢的目的。本研究有別於平面式的介電泳電極設計,而是利用上、下層電極、微流管道、以及SU-8三維碗形結構層製程技術,利用電極週期性分布與三維結構幾何扭曲其電場,形成縱向不均勻電場,得以迅速捕捉懸浮於微流管道中的細胞。此外,特殊線寬設計得以符合細胞的尺寸大小 (U937, 15-20 μm) 達到單細胞解析度之需求。而三維結構層則利用準分子雷射加工機建立。理論與模擬部分,使用商用軟體模擬三種架構之介電泳力,並且利用影像處理,推算出介電泳力。實驗結果顯示,此晶片於特定的電壓與頻率下(5 Vpp, 1kHz),可於水溶液下有效地捕捉到乳膠粒子;且經試驗在適當之細胞緩衝液下,亦可捕捉到細胞;此外,本文並且探討內含不同奈米粒子之細胞的捕捉速率;進而利用此晶片進行粒子分離。本研究提供以介電泳力捕捉細胞之設計準則與製程範例。

英文摘要 This study is about designing and constructing novel single-cell trapping dielectrophoretic (DEP) biochipsm, which consist of arrayed electrods and microstructures. The underlying operational principle is based on negative-delectrophoresis to trap the cells under investigation. The DEP biochip, as different from other planar electrodes, is consisted of ITO top electrode, PDMS flow chamber, bottom electrode array and SU-8 3D microstructure array. In order to achieve single-cell resolution, we fabricate a chess-type bottom electrode array and a bowl-type 3D microstructure array based on excimer laser micromachining. Such a 3D structure not only yields a non-uniform electric field for DEP trapping but also enhances the positioning and immobilization of trapped cells.
In theoretical analysis and simulation, we use Comsol Multiphysics to simulate the DEP force in these biochips. We also use image processing to derive the velocity and acceleration of beads when subjected to DEP forces and flow dragging, and therefore estimate the magnitude of DEP force.
In experiments, the results show the chip can trap beads at specific electrical voltage and frequency (5 Vpp, 1 kHz), and trap cells in properly chosen media. We also trap the cells with different nano-paticles under the chip, and fractionate the different size beads. In summary, we propose a design and its fabrication method to trap cells by DEP, which has great potentials for measuring cell-membrane impendence and gene transfer in the future.


論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅸ
符號說明 ⅩⅣ
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 文獻回顧 4
1-4 論文架構 11
第二章 介電泳原理與電極設計模擬 12
2-1 介電泳力原理推導 12
2-1-1 在一極小電偶矩之作用力 13
2-1-2 電偶矩產生力矩 14
2-1-3 空間中任一點由電偶矩造成之電位勢 15
2-1-4 介電圓球在介電溶液中受單一方向均勻電場作用時之電偶矩 17
2-1-5 介電圓球在介電溶液中之介電泳力 21
2-1-6 與頻率相依之介電泳 23
2-1-7 正負介電泳力發生之原因 23
2-1-8 CM因子與頻率之關係 26
2-1-9 不同類型之介電泳力 29
2-2 數值軟體模擬 31
2-2-1 Comsol Multiphysics軟體簡介 31
2-2-2 本實驗電極設計之模擬 32
2-2-2-1 棋盤式電極之模擬 35
2-2-2-2 雙層電極碗型結構之模擬 39
2-2-2-3 三層電極碗型結構之模擬 43
2-2-3 三種架構之數值模擬比較 46
第三章 單細胞型晶片之製作與實驗架構 47
3-1 多形式之生物晶片 47
3-1-1 棋盤式電極生物晶片 47
3-1-2 雙層電極之三維結構生物晶片 48
3-1-3 三層電極之三維結構生物晶片 48
3-2 晶片製作流程 49
3-2-1 下部電極製作 49
3-2-1-1 光罩設計 49
3-2-1-2 載玻片清洗 50
3-2-1-3 電極蒸鍍 50
3-2-1-4 微影製程 51
3-2-2 三維結構製作 52
3-2-2-1 下部結構層SU-8製作 52
3-2-2-2 電極蒸鍍 53
3-2-2-3 準分子雷射加工機台 53
3-2-2-4 加工參數 54
3-2-2-5 光罩與加工路徑 55
3-2-3 微流管道製作 57
3-2-4 上部結構 59
3-2-5 微流管道與上部結構之接合 59
3-2-6 晶片完成圖 62
3-3 實驗儀器與架構 63
3-3-1 函數產生器(Function Generator) 63
3-3-2 示波器(Oscilloscope) 64
3-3-3 注射針幫浦(Syringe Pump) 65
3-3-4 螢光顯微鏡加設DV 65
3-3-5 個人電腦 66
3-3-6 實驗架構 66
第四章 實驗結果與分析 67
4-1 捕捉粒子之可行性 67
4-1-1 棋盤式電極晶片捕捉乳膠微粒實驗 67
4-1-2 碗型結構晶片補捉乳膠粒子 67
4-2 捕捉單一活體U937細胞 69
4-3 捕捉內含不同奈米粒子之細胞 71
4-4 利用影像分析推算出介電泳力 73
4-4-1 流體拖曳力(Drag Force) 73
4-4-2 物理問題描述 75
4-5 利用本晶片做粒子分離 82
4-6 比較三種晶片架構 85
第五章 結論與未來展望 86
5-1 結論 86
5-2 未來展望 87
參考文獻與書目 88
參考文獻 1. H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields”, Journal of Applied Physics, Vol. 22, 1951.
2. H. A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics”, Journal of Applied Physics, Vol. 29, pp. 1182-1188, 1958.
3. J. Voldman, R. A. Braff, M. Toner, M. L. Gray and M. A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps”, Biophysical Journal, Vol. 80, pp. 531-541, 2001.
4. A. Rosenthal and J. Voldman, “Dielectrophoretic Taps for Single-Particle Patterning”, Biophysical Journal, Vol. 88, pp. 2193-2205, 2005.
5. N. G. Green and H. Morgan, “Dielectrophoretic Separation of Nano-particles”, J. Phys. D:Appl. Phys, Vol. 30, 1997.
6. S. Archer, T. T. Li, A. T. Evans, S. T. Britland and H. Morgan, “Cell Ractions to Dielectrophoretic Manipulation”, Biochemical and Biophysical Research Communications, Vol. 257, pp. 687-698, 1999.
7. H. Li and R. Bashir, “DEP Separation and Manipulation of Live and Heat-treated Cells of Listeria on Microfabricated Devices with Interdigitated Electrodes”, Sensors and Actuators B, Vol. 86, pp. 215-221, 2002.
8. M. Frenea, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, “Positioning Living Cells on a High-density Electrode Array by Negative Dielectrophoresis”, Materials Science and Engineering C, Vol. 23, pp.597-603, 2003.
9. D. S. Gray, J. L. Tan, J. Voldman and C. S. Chen, “Dielectrophoretic Registration of Living Cells to a Microelectrode Array”, Biosensors and Bioelectronics, Vol. 19, pp. 1765-1774, 2004.
10. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace and X. Xu, “Dielectrophoretic Cell Separation and Gene Expreesion Profiling on Microelectronic Chip Arrays”, Anal. Chem, Vol. 74, pp. 3362-3371, 2002.
11. J. Rousselet, G. H. Markx and R. Pethig, “Separation of Erythrocytes and Latex Beads by Dielectrophoretic Levitation and Hyperlayer field-flow Fractionation”, Colloids and Surfaces A, Vol. 140, pp. 209-216, 1998.
12. T. B. Jones, “Basic Theory of Dielectrophoresis and Electrorotation” IEEE Engineering in Medicine and Biology Magazine, pp. 33-42, 2003.
13. R. Pethig, M. S. Talary and R. S. Lee, “Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition”, IEEE Engineering in Medicine and Biology Magazine, pp. 43-50, 2003.
14. X. B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Traveling Wave Dielectrophoresis”, J. Phys. D:Appl. Phys. Vol. 27, pp. 1571-1574, 1994.
15. M. P. Hughes, R. Pethig and X. B. Wang, “Dielectrophoretic Forces on Particle in Traveling Electric Fields”, J. Phys. D:Appl. Phys. Vol. 29, pp.474-482, 1996.
16. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan and T. C. Tan, “Large Area Traveling Wave Dielectrophoresis Particle Separator”, J. Micromech. Microeng, Vol. 7, pp. 65-70, 1997.
17. E. G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski and K. V. I. S. Kaler, “A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells”, J. Microbiological Methods, Vol. 58, pp.387-401, 2004.
18. T. B. Jones, “Electromechanics of Particles”, Cambridge University Press, 1995
19. D. K. Cheng, “Field and Wave Electromagnetics”, Second Edition, Addison-Wesley Publishing Company Inc., 1989.
20. Goodfellow Corporation, “Material Catalogue”, Berwyn, PA 19312-1780, USA.
21. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsioxane (PDMS) Elastomer”, Journal of Micromechanical systems, Vol. 9, 2000.
22. J. H. Kim, K. H. Na, C. J. Kang, D. Jeon and Y. S. Kim, “A Disposable Thermopneumatic-actuated Microvalve Stacked with PDMS Layers and ITO-coated Glass”, Microelectronic Engineering, Vol. 73, pp. 864-869, 2004.
23. A. J. Goldman, R. G. Cox and H. Bernner, “Slow Viscous Motion of a Sphere Parallel to a Plane Wall-II Couette Flow”, Chemical Engineering Science, Vol. 22, pp. 653-660, 1967.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw