進階搜尋


 
系統識別號 U0026-0812200912031619
論文名稱(中文) 以高分子輔助電紡技術製備中孔洞二氧化鈦奈米絲
論文名稱(英文) Polymer-Assisted Electrospinning of Mesoporous Titanium Dioxide Nanofibers
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 陳俊佑
研究生(英文) Jiun-Yu Chen
電子信箱 juchen506@yahoo.com
學號 n5693117
學位類別 碩士
語文別 英文
論文頁數 95頁
口試委員 口試委員-黃啟祥
指導教授-郭昌恕
口試委員-林弘萍
中文關鍵字 二氧化鈦  電紡絲  溶膠-凝膠  奈米絲  一維奈米材料 
英文關鍵字 Nanofibers  Titanium Dioxide  Electrospinning  Sol-Gel  One-dimensional nanomaterials 
學科別分類
中文摘要 本研究利用高分子輔助電紡絲的技術來製備二氧化鈦奈米絲。 以四異丙烷氧化鈦 (TTIP) 與聚乙烯吡咯烷酮 (PVP)混合而成的酒精溶液作為溶膠凝膠溶液,並透過施加了高電場的針頭噴射而出。 伴隨著溶劑揮發與溶膠-凝膠固化,帶大量電荷的高分子噴出物在到達接地電極前,形成了高分子/金屬氧化物奈米絲。
隨後,利用鍛燒處理來促使二氧化鈦結晶與相變化並去除高分子。 電紡絲的過程與鍛燒後的二氧化鈦奈米絲深受高分子影響。 本研究調查並討論了製程參數對二氧化鈦奈米絲結構與性質的影響。
利用相同的PVP/TTIP溶膠-凝膠溶液製備了微米級的厚膜,並與一維的二氧化鈦奈米絲比較。

英文摘要 Titanium dioxide nanofibers were fabricated via a polymer-assisted electrospinning technique. A mixture of titanium-tetraisopropoxide (TTIP) and poly(vinylpyrrolidone) (PVP) in an alcohol medium utilized as the sol-gel solution was ejected through a needle under a strong electrical field. In company with the solvent evaporation and the sol-gel solidification, highly charged polymer jet induces the formation of polymer/metal oxide nanofibers before reaching to the ground electrode.
Calcination process was carried out afterward to encourage the crystallization and phase transformation of titania, as well as the removal of polymer domains. Electrospinning process and calcined titania nanofibers exhibited strong relationship with the presence of polymer media. Process parameters and the characterizations of nanoconstructed titania nanofibers were investigated and discussed.
Micron-scaled thick films produced by the same PVP/TTIP sol-gel solutions were prepared to compare with one-dimensional titania nanofibers.

論文目次 Abstract ………………………………………..……………………………i
摘要 ……………………………………………………………..…….……ii
Acknowledgement …………………………………………..…………….iii
Contents ……………………………………………………..…………..….v
List of Tables …………………………………………………..…..……..viii
List of Illustrations ………………………………………………..….…...ix
1. Introduction ………………………………………..…………………...1
1-1 Nanomaterials and nanotechnology ……………………..…………1
1-2 One-dimensional TiO2 Nanomaterials …………………………..…3
1-3 Electrospinning …………………………..………………………...6
1-4 Motivation …………………………………….…………………...7
2. Experimental …………………………………….……………………..9
2-1 Materials and experimental instruments ………………………..…9
2-1-1 Materials ………………………………..…………………...9
2-1-2 Experimental instruments ………………………………..….9
2-1-3 Electrospinning apparatus ……………………………….....10
2-2 Experimental procedures …………………………………..……..12
2-2-1 Preparations of sol-gel solutions for electrospinning ….......12
2-2-2 Preparations of electrospning solutions ……………..…..…12
2-2-3 Fabrications of PVP/TTIP nanofibers by electrospinning …13
2-2-4 Calcination process to crystallize TiO2 nanofibers ………...13
2-2-5 Bulk samples preparations ……………………..…………..14
2-3 Analysis instruments …………………………..…………………17
2-3-1 Scanning electron microscopy (SEM) ……………..………18
2-3-2 Transmission electron microscopy (TEM) ……………..….18
2-3-3 Fourier transform infrared spectroscopy (FTIR) ………..…19
2-3-4 X-ray diffractometer (XRD) …………………………….....19
2-3-5 N2 adsorption-desorption isotherm …………………..…….20
2-3-6 Thermgrvimetric analyzer (TGA) …………………..……...20
2-3-7 UV-vis spectrometer (UV-vis) ………………..……………21
3. Results and Discussion ……………………………………..…………22
3-1 As-spun PVP/TTIP nanofibers ………………………………..….22
3-1-1 PVP/TTIP ratios dependent morphologies of as-spun nanofibers …………………………..………….…………..22
3-1-2 Microstructures of as-spun PVP/TTIP nanofibers …………27
3-1-3 Hydrolysis and condensation of TTIP within electrospun nanofibers ………………………..………………………...27
3-1-4 Thermal properties of as-spun PVP/TTIP nanofibers …..….36
3-2 Calcined TiO2 Nanofibers …………………………..………...….42
3-2-1 Morphologies of calcined TiO2 nanofibers ...........................42
3-2-2 Crystal structures of calcined TiO2 nanofibers ……….....…48
3-2-3 Crystal structures comparison between one-dimensional nanofibers and bulk samples …………………..…………..56
3-2-4 Surface areas and pore size distributions of calcined TiO2 nanofibers …………………………..……………………...63
3-3 Orientations of TiO2 crystals in electrospun nanofibers ………....74
3-3-1 TEM analyses of TiO2 nanofibers ……………..…………...74
3-3-2 TiO2 nanofiber with diameter comparable to its crystallite sizes ……..…………………..……………………………..82
3-4 Band gap energies of TiO2 nanofibers …………………..….……85
4. Conclusion ……………………………………..………………………89
References …………………………………………..…………………….90
參考文獻 1. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H., CdS nanoclusters. Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. Journal of Physical Chemistry 1994, 98, (31), 7665.
2. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933.
3. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353.
4. Iijima, S., Helical microtubules of graphitic carbon. Naure 1991, 354, 56.
5. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M., Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles. Nano Letters 2005, 5, (4), 667.
6. Chen, R. S.; Huang, Y. S.; Liang, Y. M.; Hsieh, C. S.; Tsai, D. S.; Tiong, K. K., Field emission from vertically aligned conductive IrO2 nanorods. Applied Physics Letters 2004, 84, (9), 1552.
7. Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X., Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Applied Physics Letters 2001, 78, (8), 1125.
8. Tanemura, S.; Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova-Gabain, N., Optical properties of polycrystalline and epitaxial anatase and rutile
90
TiO2 thin films by rf magnetron sputtering. Applied Surface Science 2003, 212-213, 654.
9. Dey, A.; De, S.; De, A.; De, S. K., Characterization and dielectric properties of polyaniline-TiO2 nanocomposites. Nanotechnology 2004, 15, (9), 1277.
10. Perrin, F. X.; Nguyen, V. N.; Vernet, J. L., Dielectric study of the effect of a sol-gel inorganic network on polymer relaxation dynamics in acrylic/titania hybrids. Macromolecular Chemistry and Physics 2005, 206, (14), 1439.
11. Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48, (5-8), 53-229.
12. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M., Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society 1997, 80, (12), 3157.
13. Gratzel, M., Photoelectrochemical Cells. Nature 2001, 414, (6861), 338.
14. Ovenstone, J.; Yanagisawa, K., Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. Chemistry of Materials 1999, 11, (10), 2770.
15. Rubio, J.; Oteo, J. L.; Villegas, M.; Duran, P., Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide. Journal of Materials Science 1997, 32, (3), 643.
16. Sujaridworakun, P.; Koh, F.; Fujiwara, T.; Pongkao, D.; Ahniyaz, A.; Yoshimura, M., Preparation of anatase nanocrystals deposited on
91
hydroxyapatite by hydrothermal treatment. Materials Science and Engineering C 2005, 25, (1), 87.
17. Wen, J.; Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chemistry of Materials 1996, 8, (8), 1667.
18. Limmer, S. J.; Chou, T. P.; Cao, G., Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods. Journal of Physical Chemistry B 2003, 107, (48), 13313.
19. Khan, S. U. M.; Sultana, T., Photoresponse of n-TiO2 thin film and nanowire electrodes. Solar Energy Materials and Solar Cells 2003, 76, (2), 211.
20. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chemistry of Materials 1997, 9, (3), 857.
21. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, (12), 3160.
22. Zhang, X. Y.; Zhang, L. D.; Chen, W.; Meng, G. W.; Zheng, M. J.; Zhao, L. X.; Phillipp, F., Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays. Chemistry of Materials 2001, 13, (8), 2511.
23. Pradhan, S. K.; Reucroft, P. J.; Yang, F.; Dozier, A., Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth 2003, 256, (1-2), 83.
24. Doshi, J.; Reneker, D. H., Electrospinning process and applications of electrospun fibers. Journal of Electrostatics 1995, 35, (2-3), 151.
25. Yao, L.; Haas, T. W.; Guiseppi-Elie, A.; Bowlin, G. L.; Simpson, D. G.;
92
Wnek, G. E., Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chemistry of Materials 2003, 15, (9), 1860.
26. Shin, C.; Chase, G. G.; Reneker, D. H., Recycled expanded polystyrene nanofibers applied in filter media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 262, (1-3), 211.
27. Pawlowski, K. J.; Belvin, H. L.; Raney, D. L.; Su, J.; Harrison, J. S.; Siochi, E. J., Electrospinning of a micro-air vehicle wing skin. Polymer 2003, 44, (4), 1309.
28. Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005, 6, (4), 2017.
29. Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S., Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology 2005, 16, (10), 2138.
30. Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.; Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G., Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)-PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules 2004, 37, (5), 1787.
31. Kedem, S.; Schmidt, J.; Paz, Y.; Cohen, Y., Composite Polymer Nanofibers with Carbon Nanotubes and Titanium Dioxide Particles. Langmuir 2005, 21, (12), 5600.
32. Caruso, R. A.; Schattka, J. H.; Greiner, A., Titanium dioxide tubes from Sol-Gel coating of electrospun polymer fibers. Advanced Materials 2001, 13, 93
(20), 1577.
33. Dai, H.; Gong, J.; Kim, H.; Lee, D., A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002, 13, (5), 674.
34. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Letters 2003, 3, (4), 555.
35. Yoshida, M.; Prasad, P. N., Sol-Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides. Chemistry of Materials 1996, 8, (1), 235.
36. Sung, C.; Krishnappa, R. V. N.; Desai, K., Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage. Journal of Materials Science 2003, 38, (11), 2357-2365.
37. Zheng, M.-P.; Gu, M.-Y.; Jin, Y.-P.; Wang, H.-H.; Zu, P.-F.; Tao, P.; He, J.-B., Effects of PVP on structure of TiO2 prepared by the sol-gel process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2001, 87, (2), 197-201.
38. Choi, J.; Rubner, M. F., Influence of the Degree of Ionization on Weak Polyelectrolyte Multilayer Assembly. Macromolecules 2005, 38, (1), 116.
39. Von, K. H.; Thiele; Panse, M. Z., Allg. Chem. Einzel. 1978, 441, 23.
40. Xia, B.; Huang, H.; Xie, Y., Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis. Materials Science and Engineering B 1999, 57, (2), 150.
41. Spurr, R. A.; Myers, H., Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry 1957, 29, (5), 760.
94
42. Wang, W.; Gu, M.; Jin, Y., Effect of PVP on the photocatalytic behavior of TiO2 under sunlight. Materials Letters 2003, 57, (21), 3276-3281.
43. Cullity, B. D.; Stock, S. R. Diffraction III: Real Samples. Elements of X-Ray Diffraction, 3rd; Prentice Hall: New Jersey, 2001, 167-171.
44. Kumar, K.-N. P.; Keizer, K.; Burggraar, A. J., Textural Evolution and Phase Transformation in Titania Membranes: Part 1.-Unsupported Membranes. Journal of Materials Chemistry 1993, 3, (11), 1141.
45. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F., Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism. Chemistry of Materials 2001, 13, (5), 1848.
46. Tokita, S.; Tanaka, N.; Saitoh, H., High-rate epitaxy of anatase films by atmospheric chemical vapor deposition. Japanese Journal of Applied Physics, Part 2: Letters 2000, 39, (2 B), 169-171.
47. Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental 2001, 32, (4), 215.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw