進階搜尋


 
系統識別號 U0026-0812200912031008
論文名稱(中文) 生質柴油燃料比例對引擎排放有機氣態污染物特徵影響研究
論文名稱(英文) Effects of Biodiesel Fraction on Exhaust Emissions from Diesel Engine
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 張笙又
研究生(英文) Sheng-yu Chang
電子信箱 p5693125@ccmail.ncku.edu.tw
學號 p5693125
學位類別 碩士
語文別 中文
論文頁數 198頁
口試委員 口試委員-江鴻龍
口試委員-張能復
指導教授-蔡俊鴻
口試委員-鄭福田
中文關鍵字 揮發性有機物  醛酮化合物  致臭氧生成潛勢  暫態循環測試  冷/熱啟動  生質柴油 
英文關鍵字 Hot-start  Cold-start  Volatile Organic Compounds  Transient Cycle 
學科別分類
中文摘要 本研究乃探討重型柴油引擎使用生質燃料(棕櫚生質柴油)排放有機氣態空氣污染物特徵,實驗方法以引擎動力計進行美國重型柴油引擎暫態循環測試(US HDD Transient Cycle),配合國內相關研究同步進行採樣,依照冷熱啟動兩個測試循環以Tedlar採樣袋和醛酮吸附管(Cartridge)進行採樣後,利用GC及HPLC定性定量揮發性有機物及醛酮化合物成份及濃度。本研究實驗主要以一期及二期重型柴油引擎使用市售超級柴油及四支生質柴油,包括80%市售超級柴油添加20%生質柴油(B20)、95%烷化油添加5%生質柴油(BD9505)、80%烷化油添加20%生質柴油(BD8020)及純生質柴油,討論柴油引擎冷啟動、熱啟動之廢氣排放空氣污染物特徵物種、排放係數以及致臭氧生成潛勢差異,最後以一般空氣污染物、致臭氧潛勢及有害空氣污染物健康風險評估分別進行佳化油品評析。
研究結果顯示,柴油引擎經暫態循環測試排放非甲烷有機氣體平均排放係數分別為D100(3116.7 mg/bhp-hr)、BD9505(3514.6 mg/bhp-hr)、B20(3996.5 mg/bhp-hr)、BD8020(2923.2 mg/bhp-hr)、B100(3757.9 mg/bhp-hr);柴油引擎冷熱啟動VOCs排放特徵物種為n-Undecane、Toluene、1,3,5-Trimethylbenzene、m-Ethyltoluene、o-Ethyltoluene,醛酮污染物主要排放物種為Formaldehyde、Acetone、Propionaldehyde、Benzaldehyde。以D100做為基準比較非甲烷有機氣體排放量,且使用生質柴油之NMOG增減量效果皆大於儀器分析擾動(±4.9~5.3%),由結果顯示使用BD8020(6.2%)可對於NMOG總量有較佳之減量效果。
柴油引擎廢氣致臭氧生成潛勢主要物種為Aromatics(78~89%),其次依序為Alkenes(2~12%)、Alkanes(4~7%)、Carbonyls(3~5%),柴油引擎使用市售超級柴油廢氣致臭氧潛勢排放係數為17.3 O3 g/bhp-hr,以D100做為基準比較NMOG致臭氧排放係數,BD8020(12.0%)有減量趨勢,其餘油品為增量,依序為BD9505(6.5%)、B100(11.8%)、B20(17.3%),使用BD8020可對於NMOG致臭氧排放係數有較佳之減量效果。
柴油引擎使用生質燃料污染排放所致個人終身致癌風險僅烷化生質柴油BD8020(40.8%)及BD9505(12.8%)具有減量效果,其餘三支油品為增量,分別為B100(22.5%)、B20(13.7%),使用BD8020具有較佳個人終身致癌風險減量潛勢。柴油引擎使用生質燃料污染排放所致慢性健康危害指數此四支替代油品皆為增量,依序分別為B100(63.5%)、BD8020(25.7%)、BD9505(20.1%)、B20(2.0%),使用B20對於慢性健康危害指數增減量效果於分析擾動範圍(±4.9~5.3%)內,故無明顯增減量效果,使用B20具有較低慢性健康危害增量潛勢。




英文摘要 The study has been conducted to survey the emissions of air pollutants from heavy-duty diesel engine powered by biomass(palm biodiesel) fuel. Emission tests carried out on an engine dynamometer following the designated test procedure of US HDD Transient Cycle with standard cold-start and hot-start testing processes. The volatile organic compounds (VOCs) and carbonyls compounds were sampled by bags and DNPH-Cartridge, respectively. Samples were derived from cold-start and hot-start driving state. This experiment used two heavy-duty diesel engine complied with Taiwan EPA’s Phase 1 and Phase 2 heavy-duty diesel mobile emission standard, respectively. The test oil included lower sulfur diesel(D100), add 20% palm biodiesel(B20), alkylated fuel blending with different fraction of 5%(BD9505), 20%(BD8020) and pure plam bioesel(B100). Besides, the ozone formation potentials of heavy-duty diesel engine emissions evaluated by the maximum incremental reactivity (MIR) index.
The results showed that HC, CO, CO2, NOx and PM emission rate D100 fuel were 1.11±0.14 g/bhp-hr, 7.64±4.59 g/bhp-hr, 648.37±43.67 g/bhp-hr, 7.23±1.81 g/bhp-hr and 0.55±0.30 g/bhp-hr, respectively. Base on the emission rate of D100, the best reduction of HC(46%), CO(37%), PM(23%) cloud be B100. There was apparent difference of cold/hot-start for CO, HC and PM.
For cold-start and hot-start, the dominant VOCs species both were n-Undecane、Toluene、1,3,5-Trimethylbenzene、m-Ethyltoluene、o-Ethyltoluene. And the dominant Carbonyls species both were Formaldehyde、Acetone、Propionaldehyde、Benzaldehyde. The emission rates of NMOG(VOCs and Carbonyls) for using D100 fuel was 3074.0 mg/bhp-hr. Base on the emission rate of using D100, there were the best effectiveness of reduction(4.9%) for using BD8020. And when using the other alternation fuel cause increment.
The ozone formation potentials of heavy-duty diesel engine emissions, based on transient cycle, shows that the NMOG species distribution were Aromatics(78~89%), Alkenes(2~12%), Alkanes(4~7%) and Carbonyls(3~5%), respectively. The ozone formation potentials for using D100 was 17.3 O3 g/bhp-hr. Base on emission rate of using D100, there were the best effectiveness of reduction(12.0%) for using BD8020. And when using the other alternation fuels cause increment.
Health risk assessment of diesel engine emit volatile hazardous air pollutants, based on emission of D100 indicated using BD8020 resulted best elimination of potential cancer risk(12.0%). Otherwise, the noncancer chronic health impact for using all alternation fuels was increment. And using B20, there were the minimum increment of noncancer chronic health impacts.




論文目次 中文摘要 I
英文摘要 III
總目錄 VI
表目錄 VIII
圖目錄 XI

第一章 前言 1-1
1-1研究緣起 1-1
1-2研究目標 1-4
第二章 文獻回顧 2-1
2-1 柴油引擎空氣污染排放特性 2-1
2-2 生質柴油發展與應用 2-11
2-3 非甲烷有機物光化反應特性 2-17
第三章 研究方法 3-1
3-1 研究架構 3-1
3-2 實驗參數說明 3-3
3-3 實驗方法 3-7
3-4 分析程序及品保品管 3-11
3-5 數據處理 3-19
第四章 結果與討論 4-1
4-1 使用生質燃料柴油引擎廢氣基準污染物特徵解析 4-1
4-2 使用生質燃料柴油引擎廢氣有機物特徵解析 4-15
4-3 使用生質燃料柴油引擎廢氣有機物組成解析 4-31
4-4 柴油引擎廢氣光化反應性解析及健康風險評估 4-68
4-5 單位油耗光化反應性污染物排放特徵解析 4-82
4-6 油品佳化評析 4-91
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-5
參 考 文 獻
附 錄
參考文獻 1.A.S. Ramadhas et al., “Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil”, Renewable Energy, 30:1789-1800(2005).
2.Anjali Srivastava, “Source apportionment of ambient VOCs in Delhi city”, Sci. Total Environ., 343:207-220(2004).
3.Atkinson, R., Tuazon, E. C. and Aschmann, S. M., “Products of the gas-phase reactions of O3 with alkenes”, Environ. Sci. Technol., 29:1860-1866(1995)
4.Bang-Quan He, “The effect of ethanol blended diesel fuels on emissions form a diesel engine”, Atm. Env., 37:4965-4971(2003).
5.Carter W. P. L. “Development of ozone reactivity scales for volatile organic compounds”, Journal of AWMA., 44:881-899(1994).
6.Carter, W. P. L., Pierce, J. A., Luo, D., and Malkina, I. L.,“Environmental chanmber study of maximum incremental reactivities of volatile organic compounds” Atm. Env., 29:2499-2511(1995).
7.CARB, Consolidated table of OEHHA/ARB approved risk assessment health values.(2004).
8.Derwent, R. G., & Jenkin, M. E., “Hydrocarbons and the long-range transport of ozone and PAN across europe”, Atm. Env., 25A:1661-1678(1991).
9.Dann, T. and Wang, D. “Volatile organic compound measurements in Canadian urban and rural areas: 1989-1990”, 85th Annual. Meeting, AWMA, Missouri.(1992).
10.Dimitriades, B. “Scientific basis for the VOC reactivity issues raised by section 183(e) of the Clean Air Act Amendments of 1990”, Journal of AWMA., 46:963-970(1996).
11.Derwent, R. G. et al.“Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions”, Atm. Env., 30:181-199(1996).
12.Douglas H. Lowenthal, “Characterization of heavy-duty diesel vehicle emissions”, Atm. Env., 28:731-743(1994).
13.Edward Crabbe, “Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties”, Process Biochemistry, 37:65-71(2001).
14.Finlayson-Pitts B.J., Pitts J.N., “Atmospheric chemistry ”, John Wiley and sons. New York.(1986).
15.Hector Jorquera, “Receptor modeling of ambient VOC at Santiago”, Chile, Atm. Env., 38:4243-4263(2004).
16.James J. Schauer et al., “Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks”, Environ. Sci. Technol., 33:1578-1587(1999).
17.Jiping Zhu et al., “Comparison of vehicle exhaust emissions from modified diesel fuels”, Journal of AWMA., 53:67-76(2003).
18.Juhun Song et al., “Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine”, Energy & Fuels, 16:294-301(2002).
19.Kaiser, E. W. et al., “Effect of fuel structure on emissions from a spark-ignited engine.3. olefinic fuels”, Environ. Sci. Technol., 27:1440-1447(1993).
20.Krahl Jaxrgen, “Review:utilization of rapseed oil, rapseed oil methyl ester or diesel fuel:exhaust gas emissions and eastimation of environmental effects. International fallfuels and lubricant meeting.” SAE Tech Pap Ser(1996).
21.Lisa Graham, “Chemical characterization of emissions from advanced technology light-duty vehicles”, Atm. Env., 39:2385-2398(2005).
22.Lyle Howard, “Technical and economic assessmenet of biodiesel for vehicular fuel use”, Bi-State Developmenet Agency(1994).
23.Luigi Turrio-Baldassarri et al., “Emission comparison of urban bus engine fueled with diesel oil and ‘biodiesel’ blend”, Sci. Total Environ., 327:147-162(2004).
24.Massimo Cardone et al., “Brassica carinata as an alternative oil crop for the production of biodiesel in Italy:engine performance and regulated and unregulated exhaust emissions”, Environ. Sci. Technol., 36:4656-4662(2002).
25.Martin Weilenmann et al., “Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures”, Atm. Env., 39:2433-2441(2005).
26.M.A. Kalam & H. H. Masjuki, “Biodiesel from palmoil-an analysis fo its properties and potential”, Biomass & Bioenergy, 23:471-479(2003).
27.McDonald J.D. et al., “Characterization of fine particle material in ambient air and personal samples from an underground mine”, Aerosol Sci. Technol., 36:1033-1044(2002).
28.McDonald J.D. et al., “Fine particle and gaseous emission rates from residential wood combustion”, Environ. Sci. Technol., Vol. 34:2080-2091(2000).
29.National Biodiesel Board, “Evaluation of biodiesel in an urban transit bus power by a 1988 DDECII6V92 TA engine”(1995).
30.National Biodiesel Board, “Biodiesel production”, http://www.biodiesel.org/pdf_files/fuelfactsheets/Production.PDF(2006).
31.Perkins, H. C., “Air pollution”, McGraw-Hill Inc.(1974).
32.Russell, A. et al., “Urban ozone control and atmospheric reactivity of organic gases”, Science, 269:491-495(1995).
33.Schifter, “Estimation of motor vehicle toxic emissions in the metropolitan area of Mexico city”, Environ. Sci. Technol., 34:3606-3610(2000).
34.Shida Tang et al., “Simultaneous determination fo carbonlys and NO2 in exhausts of heavy-duty diesel trucks and transit buses by HPLC following 2,4-Dinitrophenylhydrazine cartridge collection”, Environ. Sci. Technol., 38:5968-5976(2004).
35.Thomas Schmitz et al., “Determination of VOC-components in the exhaust of gasoline and diesel passenger cars”, Atm. Env., 34:4639-4647(2000).
36.USEPA, A “Comprehensive analysis of biodiesel impacts on exhaust emission”,(2002).
37.Wadden, R. A. ”Source discrimination of short-term hydrocarbon samples measured aloft“, Environ. Sci. Technol., 20:473-483(1986).
38.Wang Ying et al., “Diesel emission improvements by the use of oxygenated DME/Diesel blend fuels”, Atm. Env., 40:2313-2320(2006).
39.Winebrake, J. J. & Deaton, M. L., “A comparative analysis of emissions deterioration for in-use alternative fuel vehicles”, Journal of AWMA., 47:1291-1296(1997).
40.Walter O. Siegl et al., “Organic emissions profile for a light-duty diesel vehicle”, Atm. Env., 33:797-805(1999).
41.W.G. Wang et al., “Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification”, Environ. Sci. Technol., 34:933-939(2000).
42.USEPA, Technology transfer network national air toxics assessment, http://www.epa.gov/ttn/atw/nata/chartrisk.html(2006).
43.Xiaoyan Shi, “Emission reduction potential of using Ethanol-Biodiesel-Diesel fuel blend on a heavy-duty diesel engine”, Atm. Env., 40:2567-2574(2006).
44.吳澤松,”生質柴油之物化性分析”,石油季刊,第41卷第2期:43-49(2005)。
45.交通部,”交通統計要覽”,http://www.motc.gov.tw/hypage.cgi?HYPAGE=stat07.asp(2005).
46.陳介武,“生化柴油發展與趨勢”,http://www.soybean.org.tw/tech6-3.htm, ASA/Taiwan(2000).
47.中國石油股份有限公司,http://www.cpc.com.tw(2006)。
48.高雄市環保局,”高雄市移動污染源替代燃料試驗暨以生質柴油替代燃料進行垃圾車實車測試計劃”期末報告(2004)。
49.楊明益,”高屏地區大氣醛酮化合物與臭氧污染事件關聯性”,國立成功大學碩士論文(2000)。
50.陳永和,”重型柴油引擎測試程序”,財團法人車輛研究測試中心(2006)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw