進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0812200912000877
論文名稱(中文) 應用需求鏈概念建構產銷決策最佳化模式之研究-以紡織成衣業為例
論文名稱(英文) A study of optimal model of the production and distribution decision applying demand chain concept - case for the textile industry
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩博士班
系所名稱(英) Department of Industrial and Information Management
學年度 94
學期 2
出版年 95
研究生(中文) 陳昱嘉
研究生(英文) Yu-Chia Chen
學號 r3693105
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 口試委員-王逸琳
指導教授-呂執中
口試委員-傅新彬
口試委員-陳銘崑
中文關鍵字 協同需求管理  產銷決策  動態規劃  需求鏈管理  全球運籌 
英文關鍵字 global logistics management  production and distribution  demand management  dynamic programming  demand chain management 
學科別分類
中文摘要   全球化的趨勢下,企業必須善用跨國資源,以將分散全球各地之貨物、資訊、財務及工作流程有效整合,進而創造其附加價值,方能在全球競爭環境下生存。考量成本與環境等因素,紡織成衣業者大部分遍佈於世界各地,導致紡織成衣供應體系之反應速度受限於地理區域的廣闊及前置時間的漫長。紡織成衣業者必須應用需求鏈管理的概念,從需求導向的觀點來思考,與客戶端進行協同需求管理,早期參與訂單規劃與預測,壓縮前置時間,加快反應速度相對也提升了顧客服務水準。並透過系統化的產銷決策系統,有效地降低生產成本,使得商品能以正確的數量生產,在正確的時間配送到正確的地點,以提升其競爭力。
  本研究提出一個需求導向之產銷決策模式及協同需求管理系統,以共用、交換規劃資訊之方式協調,並運用動態規劃方法建構需求導向之產銷決策模式。此模式考量訂單數量、產品運送成本、產品訂購成本與庫存成本、廠區產能上限以及廠區特性等限制條件,使得總期望成本得以最小化。此外,本研究所提之動態規劃模式較其他模式可減少變數總數,以加快決策速度,精簡時間複雜度,提供主管決策時快速的參考資訊。
  本研究應用協同需求管理系統,提供成員體系一資訊交換平台。個案公司運用需求規劃模組、促銷管理模組、事件管理模組及產銷決策模組與體系成員一同規劃未來的需求預測,如此除可提升物流運籌能力及避免長鞭效應的發生,供應商應能及早規劃準備,使得個案體系降低缺料的風險性及減少物料堆積的成本,並在交期內生產與配送至客戶端。由個案可發現,本研究所提出之協同需求管理系統可使體系成員的效益得以最大化。




英文摘要   Many industries, such as the textile and apparel industries, have been expanded into multi-national in order to utilize the global resources in facing of the cost and other factors. The response time (lead time) and the management of resources are therefore a difficult issue for these industries. The concept of the demand chain management, which derive from the angle of the customer-driven, can enable a company to participate with the customers’ orders planning and forecasting earlier, to prepare the production and distribution process more effectively and is an important way to establish a global operations management system.
  This research proposes a demand-driven model for production and distribution in global logistics management, with basis that the suppliers and customers are willing to share and exchange information with the manufacturer in the supply chain. The model uses the dynamic programming approach and considers the variables including orders quantities, delivery cost, inventory cost and other critical factors to minimize the total expected cost. Compared to other models, the proposed model requires less variables and can reduce the complexity and computing time thereafter.
  This research also empirically studies the way of applying demand chain management to establish a global logistics management system in a case company. The system includes the modules such as demand planning, promotion management, events management, and decision-making of production and distribution, which can increase the logistics management capability and reduce the bull-whip effect in the case supply chain. Through this case study, it is verified that the demand chain management concept is very useful for a globalized company.




論文目次 授權書 II
摘要 III
Abstract IV
誌 謝 V
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究範圍與限制 3
第四節 研究方法與流程 3
第二章 文獻探討 5
第一節 供應鏈管理與需求鏈管理 5
2-1-1 供應鏈管理與需求鏈管理之轉變 5
2-1-2 需求鏈管理之定義 7
2-1-3 需求鏈管理對企業營運績效的影響 9
第二節 產銷決策模式之探討 13
2-2-1 產銷決策模式之問題描述 13
2-2-2 產銷決策模式最佳化之探討 15
2-2-3 混合整數線性規劃之介紹 20
2-2-4 動態規劃介紹 26
第三節 紡織成衣產業之特性 28
2-3-1 紡織業之現況 29
2-3-2 紡織業之供應鏈體系 32
2-3-3 小結 33
第三章 需求導向之產銷決策模式建構 35
第一節 問題敘述 35
第二節 動態規劃模式 38
第三節 數值範例 41
第四節 討論 48
第四章 協同需求管理系統之建置 50
第一節 個案公司背景介紹 50
4-1-1 個案公司介紹 50
4-1-2 目前營運流程及問題敘述 51
第二節 系統導入與建置 53
4-2-1 建置流程 53
4-2-2 系統架構 54
第三節 情境分析 56
4-3-1 環境設定 56
4-3-2 需求管理 58
4-3-3 促銷管理 61
4-3-4 事件管理 64
4-3-5 產銷決策 65
第四節 討論 66
第五章 結論與未來研究方向 68
第一節 結論 68
第二節 未來研究方向 69
附錄 A 71
參考文獻 74

參考文獻 一、 中文部份
1. 邱俊嘉,「台灣紡織產業新貌」,台研兩岸產業與投資,民89年11月,頁2~9。
2. 鐘正郎,「全球運籌體系中生產與配送模式之整合研究」,國立成功大學工業管理研究所碩士論文,民91年。
二、 英文部分
1. Alvarado, U.Y. and Kotzab, H., 2001, “Supply chain management: the integration of logistics in marketing,” Industrial Marketing Management, Vol. 30, pp. 183–198.
2. Agrawal, V., Chao, X., and Seshadri, S., 2004, “Dynamic balancing of inventory in supply chains,” European Journal of Operational Research, Vol. 159, pp. 296-317.
3. Arntzen, B. C., Brown, G. G., Harrison, T. P. and Trafton, L. L., 1995, “Global Supply Chain Management at Digital equipment corporation,” Interfaces, Vol. 25, pp. 69-93.
4. Bellman, R., 1957, Dynamic Programming, Princeton, NJ: Princeton University Press.
5. Bilgen, B. and Ozkarahan, I, 2004, “Strategic tactical and operational production-distribution models: a review,” International Journal of Technology Management, Vol. 28, pp. 151-171.
6. Bowersox, D.J. and Daugherty, P.J., 1995, “Logistics paradigms: the impact of information technology,” Journal of Business Logistics, Vol. 16, pp. 65–80.
7. Bruce, M., Daly, L. and Towers, N., 2004, “Lean or agile: A solution for supply chain management in the textiles and clothing industry,” International Journal of Operations & Production Management, Vol. 24, pp. 151-170.
8. Chance, V. and Goldfelt, C., 1985, “Lead Time Determination and Control, Proceedings of Twenty-Eights,” Annual International Conference of the American Production and Inventory Control Society, 308-310.
9. Childerhouse, P., Aikten, J. and Towill, D. R., 2002, “Analysis and design of focused demand chains,” Journal of Operations Management, Vol. 20, pp.675-689.
10. Chopra, S. and Meindl, P., 2004. Supply Chain Management: Strategy, Planning and Operations, 2ed, Prentice Hall.
11. Clark, T.H. and Hammond, J.H., 1997. “Re-engineering channel reordering processes to improve total supply chain performance,” Production and Operations Management, Vol. 6, pp. 248–265.
12. Cohen, M. and Mallik, S., 1997, “Global supply chains: research and applications, ” Production and Operations Management, Vol. 6, pp.193-210.
13. Dasci, A. and Verter, V., 2001, “A continuous model for production-distribution system design,” European Journal of Operational Research, Vol. 129, pp. 287-298.
14. Dhaenens-Flipo, C., 2000, “Spatial decomposition for a multi facility production and distribution problem,” International Journal of Production Economics, Vol. 64, pp. 177-186.
15. Dhaenens-Flipo, C. and Frinke, G., 2001, “An integrated model for an industrial production-distribution problem,” IEE Transactions, Vol. 33, pp.705-715.
16. Elhedhli, S. and Goffin, J. L., 2005, “Efficient production-distribution system design”, Management Science, Vol. 51, pp. 1151-1164.
17. Elshafei, M., Khan, M., and Duffuaa, S. O., 2006, “Repeat inspection planning using dynamic programming,” International Journal of Production Research, Vol. 44, pp. 257-270.
18. Forrester, J., 1958, “Industrial Dynamics, a Major Breakthrough for Decision Makers,” Harvard Business Review, Vol. 36, pp. 37-66.
19. Fisher, M.L., Hammond, J.H., Obermeyer, W.R. and Raman, A., 1994, “Making supply meet demand in an uncertain world,” Harvard Business Review, Vol.72, pp. 83–93.
20. Frohlich, M. T. and Westbrook, R., 2002, “Demand chain management in manufacturing and services: web-based integration, drivers and performance,” Journal of Operations Management, Vol. 20, pp.729-745.
21. Gupta, A. and Maranas, C. D., 2003, “Managing demand uncertainty in supply chain planning,” Computers and Chemical Engineering, Vol. 27, pp.1219-1227.
22. Handfield, R.B., 1993, “A resource dependence perspective of just-in-time purchasing,” Journal of Operations Management, Vol. 11, pp. 289–311.
23. Heikkila, J., 2002, “From supply to demand chain management efficiency and customer satisfaction,” Journal of Operations Management, Vol. 20, pp.747-767.
24. Huang, G.Q., Lau, J.S.K. and Mak K.L, 2003, “The impacts of sharing production information on supply chain dynamics: a review of the literature,” International Journal of Production Research, Vol. 43, pp. 1483-1517.
25. Krause, D.R., Handfield, R.B. and Scannell, T.V., 1998, “An empirical investigation of supplier development: reactive and strategic processes,” Journal of Operations Management, Vol. 17, pp. 39– 58.
26. Jayaraman, V. and Pirkul H., 2001, “Planning and coordination of production and distribution facilities for multiple commodities,” European Journal of Operational Research, Vol. 133, pp. 394-408.
27. Kanyalkar, A. P. and Adil, G. K., 2005, “An integrated aggregate and detailed planning in a multi-site production environment using linear programming,” International Journal of Production Research, Vol. 43, pp.4431-4454.
28. Kerschbamer, R. and Tournas, Y., 2003 “In-house competition, organizational slack, and the business cycle,” European Economic Review, Vol. 47, pp. 505-520.
29. Kim, I. and Tang, C. S., 1997, “Lead time and response time in a pull production control system,” European Journal of Operational Research, Vol. 101, pp.474-485.
30. Lai, X. and Tan, K. C., 2005, “Dynamic programming for QFD optimization,” Quality and Reliability Engineering International, Vol. 21, pp. 769-780.
31. Landeghem, H. V. and Vanmaele, H., 2002, “Robust planning: a new paradigm for demand chain planning,” Journal of Operations Management, Vol. 20, pp.769-783.
32. Lee, H. L., So, K. C. and Tang, C. S., 2000, “Value of Information Sharing in a Two-level Supply Chain,” Management Science, Vol. 46, pp. 626-643.
33. Lee, H.L., Padmanabhan, V. and Whang, S., 1997, “The bullwhip effect in supply chains,” Sloan Management Review, Vol. 38, pp. 93–102.
34. Lee, Y.H. and Kim, S.H., 2002, “Production-distribution planning in supply chain considering capacity constraints,” Computers and Industrial Engineering, Vol. 43, pp. 169–190.
35. Mallya, S., Banerjee, S. and Bistline W. G., 2001, “A decision support system for production/distribution planning in continuous manufacturing,” Decision Sciences, Vol. 32, pp. 545-556.
36. Martin, C. H., Dent, D. C. and Eckhart, J. C., 1993, “Integrated production, distribution, and inventory planning at Libbey-Owens-Ford,” Interfaces, Vol. 23, pp. 68-78.
37. Meixell, M. J. and Gargeya, V. B., 2005 “Global supply chain design: A literature review and critique,” Transportation Research Part E, Vol. 41, pp. 531-550.
38. Min, S. and Mentzer, J.T., 2004, “Developing and measuring supply chain concepts,” Journal of Business Logistics, Vol. 25, pp. 63–99.
39. Miltenburg, J. and Sparling, D., 1996, “Managing and reducing total cycle time: models and analysis,” International Journal of Production Economics, Vol. 46-47, p.p. 89-108.
40. Moon, C., Kim, J. and Hur, S., 2002, ”Integrated process planning and scheduling with minimizing total tardiness in multi-plant supply chain,” Computers & Industrial Engineering, Vol. 43, pp. 331-349.
41. Omar, M. and Smith, D. K., 2002, “An optimal batch size for a production system under linearly increasing time-varying demand process,” Computers & Industrial Engineering, Vol. 42, pp.35-42.
42. Perry, M., Sohal, A., and Rumpf, P., 1999, “Quick Response supply chain alliances in the Australian textiles, clothing and footwear industry,” International Journal of Production Economics, Vol. 62, pp. 119-132.
43. Pooley, J., 1994, “Integrated production and distribution facility planning at Ault Foods,” Interfaces, Vol. 24. pp. 113-121.
44. Sabri, E. H. and Beamon, B. M., 2000, “A multi-objective approach to simultaneous strategic and operational planning in supply chain design,” Omega, Vol.28, pp 581-598.
45. Sarmiento, A.M. and Nagi, R., 1999, “A review of integrated analysis of production and distribution systems,” IIE transactions, Vol. 31, pp. 1061-1074.
46. Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., 2003, Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, 2nd ed., McGraw-Hill.
47. Syarif, A., Yun, Y.S. and Gen, M., 2002, “Study on multi-stage logistics chain network: a spanning tree-based genetic algorithm approach,” Computers and Industrial Engineering, Vol. 43, pp. 299-314.
48. Tagaras, G., 1994, “A dynamic programming approach to the economic design of X-charts,” IIE Transactions, Vol. 26, pp. 48-56.
49. Thomassey, S., Happiette, M. and Castelain, J. M., 2005, “A global forecasting support system adapted to textile distribution”, Internal Journal of Production Economics, Vol. 96, pp.81-95.
50. Timple, C. H. and Kallrath, J., 2000, “Optimal planning in large multi-site production networks,” European Journal of Operational Research, Vol. 126, pp. 422-435.
51. Toni, A. D. and Meneghetti, A., 2000, “The production planning process for a network of firms in the textile-apparel industry,” International Journal of Production Economics, Vol. 65, pp. 17-32.
52. Topaloglu, H., 2005, “An approximate dynamic programming approach for a product distribution problem,” IIE Transactions, Vol.37, pp.697-710.
53. Tsiakis, P., Shah, N. and Pantelides, C. C, 2001, “Design of multi-echelon supply chain network under demand uncertainly,” Industrial Engineering and Chemistry Research, Vol. 40, pp.3585-3604.
54. Treville, S., Shapiro, R. D. and Hameri, A. P., 2004, “From supply chain to demand chain the role of lead time reduction in improving demand chain performance,” Journal of Operations Management, Vol. 24, pp. 613-627.
55. Rho, B. H. and Yu, Y. M., 1998, “A comparative study on the structural relationships of manufacturing practices, lead time and productivity in Japan and Korea,” Journal of Operations Management, Vol. 16, pp. 257-270.
56. Vercellis, C., 1999, “Multi-plant production planning in capacitated self-configuring two-stage serial systems,” European Journal of Operational Research, Vol. 119, pp. 451-460.
57. Vollmann, T.E., Cordon, C. and Heikkila, J., 2000, “Teaching supply chain management to business executives,” Production and Operations Management Vol. 9, pp. 81–90.
58. Watson, K. and Polito, T., 2003, ”Comparison of DRP and TOC financial performance within a multi-product, multi-echelon physical distribution environment,” International Journal of Production Research, Vol. 41, pp. 741-765.
59. Yan, H., Yu, Z. and Cheng, E. T. C., 2003, “A strategic model for supply chain design with logical constraints formulation and solution,” Computers & Operations Research, Vol. 30, pp2135-2155.
60. Zhou, G., Min, H. and Gen, M., 2002, “The balanced allocation of customers to multiple distribution centers in supply chain network: a genetic algorithm approach,” Computers & Industrial Engineering, Vol. 43, pp.251-261.
61. Zhu, K. and Thonemann, U. W., 2004, “Modeling the benefits of sharing future demand information,” Operations Research, Vol. 52, pp. 136-147.
三、網站部份
1. http://www.wto.org/,世界貿易組織
2. http://www.gartner.com/,Gartner Research
3. http://news.textiles.org.tw/,紡拓會
4. http://www.mof.gov.tw/mp.asp?mp=1,財政部
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2032-07-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2032-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw