進階搜尋


 
系統識別號 U0026-0812200911590770
論文名稱(中文) 轉化生長因子調控肺癌上皮細胞轉形並增強轉移能力之研究
論文名稱(英文) The involvement of slug expression and fibrogenesis in transforming growth factor β1-mediated epithelial transition in lung cancer metastasis
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 94
學期 2
出版年 95
研究生(中文) 張培毅
研究生(英文) Pei-I Chang
電子信箱 b003089100@tmu.edu.tw
學號 s2693103
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 口試委員-簡偉明
指導教授-李益謙
口試委員-呂增宏
中文關鍵字 金屬蛋白酶  上皮細胞轉形  轉形生長因子  轉移  肺癌  酶譜. 細胞移行試驗  膠原蛋白 
英文關鍵字 E-cadherin  EMT  CTGF  tgf  trichrome  collagen  lung cancer  slug  MAPK  sirius red  catenin  metastasis  MMP-2 
學科別分類
中文摘要 近二十年以來,癌症一直是人類重要的死亡原因,而肺癌更為全球癌症死亡的首位。癌細胞遠處器官的轉移與旁邊組織的侵犯是導致治療失敗的主要原因,一般而言,癌細胞越後期轉移性越強,除了少部份惡性度比較強的種類,例如,肺腺上皮細胞癌,常常在未診斷出原位癌之前,已經轉移到肝、骨、腎上腺、腎、中樞神經系統。因此了解調控轉移的分子機制及其與上皮細胞的轉形的關聯性,也許可以找出另一條癌症治療的方向。正常上皮細胞一般大量表現上皮細胞黏著因子(E-cadherin),但臨床證據顯示,部份癌症如肝癌,前列腺癌,隨著病情的進程,E-cadherin的表現跟著消失,此項消失使得上皮細胞移動性增加並具侵犯性,同時轉形生長因子(transforming growth factor β1, TGFβ1)過量表現。在本研究,肺癌細胞(A549)接受TGFβ1的刺激,E-cadherin的表現消失並伴隨著細胞的轉形(epithelial-to-mesenchymal transition, EMT),且證據顯示slug可能在此扮演抑制E-cadherin的角色。而E-cadherin的聯結蛋白β-catenin脫離細胞膜而進入細胞核,表示部份促癌基因可能有被活化。轉形後的A549細胞具有纖維母細胞(myofibroblast)的特性,表現smooth muscle acin (SMA) ,分泌膠原蛋白(collagen),結締組織生長因子(connective tissue growth factor, CTGF)來啟動纖維化反應。藉由動物以及病人檢體,我們觀察到腫瘤的組織當中含有大量的膠原蛋白,顯示纖維化的過程可能與癌細胞惡性度有關。運用A549細胞,我們發現當細胞接受到轉形生長因子的刺激,金屬蛋白酶(matrix metalloprotease)的表現增加,伴隨著此酵素活性的上升。運用細胞移行試驗,我們發現轉形生長因子增加細胞的移動性。以上結果顯示轉形生長因子誘發的肺癌上皮細胞轉形,導致纖維化的反應,而此進程可能促進了癌細胞的轉移能力。


英文摘要 Malignant solid tumors typically lead to metastases, making cancer hard to eradicate. Clinical studies show that loss of E-cadherin is common to many tumors. Recent studies have implicated a significant role of transforming growth factor β1 (TGFβ1) in cell transformation in which a tumor comprising mostly sedentary epithelial type of cells is changed into a tumor with invasive and metastatic fibroblastic type of cells. Several previous works have revealed that epithelial-to-mesenchymal transition (EMT) play a crucial role in the progression and aggressiveness of many cancer types. Slug, a transcription repressor, plays a crucial role in the regulation of EMT by suppressing several epithelial markers and adhesion molecules including E-cadherin in breast and colorectal carcinoma; the slug expression is accompanied with shorter survival. The present study aims at investigating the significance of TGFβ1 in EMT-related tumorigenesis. Using human alveolar epithelial cell line A549, we found that TGFβ1 treatment significantly down-regulated the expression of E-cadherin and up-regulated the expression of slug. In addition, down-regulated E-cadherin was followed by the redistribution of its binding protein, β-catenin, which moved from cell membrane to the nucleus, implicating that some genes related to cell adhesion and proliferation might have been activated. We found that TGFβ1 induced A549 cells to express smooth muscle actin (SMA) which is usually expressed in active myofibroblast. Consistently, we also observed in A549 cells the synthesis of collagen mRNA and the expression of connective tissue growth factor (CTGF). The SMA expression and cross-linking collagen composition were also detectable in study animals and in lung cancer patients. At the same time, using A549 cells, we also found that TGFβ1 up-regulated the expression of matrix metalloprotease-2 (MMP-2). The observation suggests that cells had adopted a more invasive potential with morphogenic alteration. In an in vitro metastasis assay, TGFβ1 was also found to promote cell migration. Our investigation taken together supports the notion that TGFβ1 induces epithelial transition that leads to fibrogenesis and eventually contributes to metastatic process.


論文目次 考試合格證明.....................................I
Abstract...............................................II
Abstract in Chinese............................III
Acknowledgement..............................V
Index.................................................IX
Abbreviation......................................XI
Introduction..........................................1
Materials and Methods........................10
Results and Discussion........................21
Tables and Figures..............................29
References..........................................58
Appendix............................................64
Curriculum Vitae................................66
參考文獻 1. Adachi M, Taki T, Hung C, et al. Reduced integrin alpha-3 expression as a factor of poor prognosis in patients with adenocarcinoma of the lung. J Clin Oncol 16,1060–1067 (1998)
2. Akhurst RJ, Derynck R. TGFβ signaling in cancer: a double-edged sword. Trends Cell Biol 11, S44–S51 (2001)
3. Basbaum CB, Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol 8, 731–738 (1996)
4. Berx G, Becker KF, Hofler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12, 226–237 (1998)
5. Bennett WP, Hussein SP, Vahakangas KH, et al. Molecular epidemiology of human cancer risk: Gene-environment interactions and p53 mutations spectrum in human lung cancer. J Pathol 187, 8–18 (1999)
6. Brassart B, Randoux A, Hornebeck W, Emonard H. Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line. Clin Exp Metastasis 16, 489–500 (1998)
7. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76–83 (2000)
8. Chang CC, Shih JY, Jeng YM, et al. Connective tissue growth Factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst 96, 364–375 (2004)
9. Chang HW, Chow V, Lam KY, Wei WI, Yuen A. Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer 94, 386–392 (2002)
10. Deng C, Kaplan MJ, Yang J, Ray D, et al. Decreased ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis & Rheumatism 44, 397–407 (2001)
11. Derynck R, Zhang Y. Nature 425, 577–584 (2003)
12. Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, et al. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61, 4222–4228 (2001)
13. Fildler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977)
14. Ginsberg RJ, Vokes EE, Rosenzweig K. Non-small cell lung cancer. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer.Priciples and Practice of Oncology, 6th ed. Philadelphia, Lippincott-Williams and Wilkins 925–983 (2001)
15. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 20, 1624–1636 (2003)
16. Gofuku J, Shiozaki H, Doki Y, Inoue M, Hirao M, Fukuchi N and Monden M. Br J Cancer 78, 1095–1101 (1998)
17. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG. Methylation patterns of the E-cadherin 5’ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275, 2727–2732 (2000)
18. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA Cancer J Clin 51, 15–36 (2001)
19. Hajra KM, Chen DY, Fearon ER. 2002. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62, 1613–1618 (2002)
20. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34, 255–268 (2002)
21. Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 100, 57–70 (2000)
22. Hartsough MT, Mulder KM. Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 270, 7117–7124 (1995)
23. Hay ED. An overview of epithelio–mesenchymal transformation. Acta Anat 154, 8–20 (1995)
24. Huncharek M, Muscat J, Geschwind JF. K-ras Oncogene mutation as a prognostic marker in non-small cell lung cancer: A combined analysis of 881 cases. Carcinogenesis 20, 1507–1510 (1999)
25. Janda E, Lehmann K, Killisch I, Jechlinger M, et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156, 299–313 (2002)
26. Kalluri R and Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112, 1776–1784 (2003)
27. Kanazawa T, Watanabe T, Kazama S, Tada T, Koketsu S, Nagawa H. Poorly differentiated adenocarcinoma and mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of E-cadherin expression due to methylation of promoter region. Int J Cancer 102, 225–229 (2002)
28. Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M and Kato I. Br J Cancer 69, 580–585 (1994)
29. Kim WS, Park C, Jung YS, et al. Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 19, 301–306 (1999)
30. Kong F, Jirtle RL, Huang DH, et al. Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86, 1712–1719 (1999)
31. Liu J, Lian Z, Han S, Waye MMY, et al. Oncogene 25, 1008–1017 (2006)
32. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z and Bissell MJ. J Cell Biol 139, 1861–1872 (1997)
33. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell–cell adhesion, migration, and β-catenin translocation. PNAS 102, 9182–9187 (2005)
34. Massague J. TGFβ1 signal transduction. Annu Rev Biochem 67, 753–791 (1998)
35. Miller YE, Franklin WA. Molecular events in lung carcinogenesis. Hematol Oncol Clin North Am 11, 215–234 (1997)
36. Murren J, Glatstein E, Pass HI. Small cell lung cancer. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer.Priciples and Practice of Oncology, 6th ed. Philadelphia, Lippincott-Williams and Wilkins 983–1018 (2001)
37. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5’ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60, 4346–4348 (2000)
38. Nelson WJ, Nusse R. Science 303, 1483–1487 (2004)
39. Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. J Cell Sci 112, 1237–1245 (1999)
40. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7, 462–468 (2001)
41. Ribeiro-Filho LA, Franks J, Sasaki M, Shiina H, Li LC, et al. CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol Carcinog 34, 187–198 (2002)
42. Roberts AB, Wakefield LM. PNAS 100, 8621–8623 (2003)
43. Roberts AB, Anzano MA., Lamb LC, Smith JM, and Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. PNAS 78: 5339–5343 (1981)
44. Rosell R, Li S, Skacel Z, et al. Prognostic impact of mutated K-ras gene in surgically resected non-small cell lung cancer patients. Oncogene 8, 2407–2412 (1993)
45. Sekido Y, Fong KM, Minna JM. Molecular biology of lung cancer. In: DeVita VT, Hellmen S, Rosenberg SA, eds. Cancer. Principles and Practice of Oncology, 6th ed. Philadelphia, Lippincott-Williams and Wilkins 917–925 (2001)
46. Siegfried JM, Weissfeld LA, Singh-Kaw P, et al. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res 57, 433–439 (1997)
47. Sleeman JP. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157, 55–81 (2000)
48. Sobin Lin. The World Health Organization’s histological classification of lung tumors: A comparison of the first and second edition. Cancer Detect Prev 5, 391–406 (1982)
49. Sulzer MA, Leers MP, van Noord JA, Boolen EC, Theunissen PH. Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in non-small cell lung cancer. Am J Res Crit Care Med 157, 1319–1323 (1998)
50. Tammemagi MC, Mclaughlin JR, Bull SB. Meta-analysis of p53 tumor-suppressor gene alternations and clinicopathological features in resected lung cancers. Cancer Epidemiol Biomarkers Prev 8, 625–634 (1999)
51. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev cancer 2, 442–454 (2002)
52. Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer 75, 191–202 (1995)
53. Tsai CM, Chand KT, Wu LH, et al. Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res 56, 206–209 (1996)
54. Vojtek AB and Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem 273, 19925–19928 (1998)
55. Wakefield LM, Roberts AB. TGF signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12, 22–29 (2002)
56. Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 19, 207–235 (2003)
57. Woodhouse EC, Chauaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 80, 1529–1537 (1997)
58. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor β. PNAS 98, 6686–6691 (2001)
59. Zemfira Z, Gizatullina, Eva Grapengiesser, Irina G, Shabalina, et al. Biochem Biophys Res Commun 304, 643–649 (2003)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw