進階搜尋


 
系統識別號 U0026-0812200911572790
論文名稱(中文) 聚對位乙烯基酚(PVPh)與芳香族聚酯類或含兩性鏈段之團聯共聚物其摻合系統相容性與作用力之分析
論文名稱(英文) Analyses of Miscibility and Interactions in Blends of Poly(4-vinyl phenol) with Aryl Polyesters or Block Copolymers of Amphiphilic Segments
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 李立鼎
研究生(英文) Li-Ting Lee
學號 n3891108
學位類別 博士
語文別 中文
論文頁數 127頁
口試委員 口試委員-林江珍
口試委員-廖德章
口試委員-陳信龍
口試委員-白世榮
口試委員-侯聖澍
口試委員-劉瑞祥
召集委員-史帝芬佛斯特
指導教授-吳逸謨
中文關鍵字 分子間作用力  聚酯類高分子  相容性  兩性團聯共聚物  高分子摻合體 
英文關鍵字 intermolecular interaction  poly(4-vinyl phenol)  amphiphilic block copolymer  polyester  miscibility  polymer blends 
學科別分類
中文摘要 中文摘要

本研究利用微分掃瞄熱卡計(DSC)、穿透式光學顯微鏡(OM)、掃瞄式電子顯微鏡(SEM)、傅立葉轉換紅外光譜儀(FT-IR)與固態核磁共振儀(NMR)深入探討兩成分與三成分poly(4-vinyl phenol)(PVPh)/芳香族聚酯類高分子與PVPh/兩性團聯共聚物poly(2-vinyl pyridine)-block-poly(ethylene oxide) (P2VP-b-PEO)和P2VP/PEO與(P2VP/PEO)/PVPh摻合系統之相容性與分子間作用力對相容性之影響。於以下將分為兩部分敘述:

(1) 兩成分與三成分PVPh/芳香族聚酯類高分子摻合系統
經由熱分析單一的玻璃轉移溫度(Tg)與OM及SEM所觀察到的均一相型態,本研究首次發現了PVPh與poly(trimethylene terephthalate) (PTT)於不定型狀態時為一相容的系統。另外,平衡熔點下降的實驗所求得的負作用力參數(12= -0.74)與負作用力能量密度(B12= -7.76 cal cm-3)亦可證明此系統的相容性。紅外光譜的分析結果也佐證了氫鍵作用力存在於此兩高分子間。PTT於摻合體中的球晶成長動力學則可使用Lauritzen-Hoffman模式來描述,並於研究結果中發現在摻合體中的PTT其摺疊面自由能(e)較純的PTT為小,其原因可歸因於PTT的晶板被與其相容的PVPh所崩解所造成。為了進一步了解PVPh與主鏈上多於四個亞甲基基團的芳香族聚酯類之相型態,在本研究中選定了PVPh/ poly(pentamethylene terephthalate) (PPT)與PVPh/ poly(hexamethylene terephthalate) (PHT)兩系統來作探討。由OM的結果發現此兩系統皆呈現相分離的相型態,並由此結果可推論當芳香族聚酯類主鏈上亞甲基團數多於四個以上時,即會與PVPh形成相分離的系統。另外,對於三成分系統,由於poly(ethylene terephthalate) (PET)、PTT與poly(butylene terephthalate) (PBT)皆與PVPh形成相容的兩成分系統,因此包含這些兩兩相容之高分子對的特殊三成分系統PBT/PVPh/PET、PET/PVPh/PTT、PTT/PVPh/PBT則亦為本研究中的探討重點。從DSC、OM、SEM的結果可知PBT/PVPh/PET與其餘兩個PET/PVPh/PTT、PTT/PVPh/PBT系統皆為罕見的完全相容三成分系統。而PBT/PVPh/PET平衡熔點下降的實驗可定量的求得一負整體作用力能量密度(B = -5.74 cal cm-3) 。由相容性定性上結果之相對比可得知PET/PVPh/PTT、PTT/PVPh/PBT兩系統之整體作用力能量密度亦與PBT/PVPh/PET相似為一負值。IR光譜的結果證明了氫鍵作用力存在於此三系統中並也同樣證實了三系統間的相容性與作用力定性上相似之行為。

(2) PVPh/兩性團聯共聚物P2VP-b-PEO和P2VP/PEO與(P2VP/PEO)/PVPh摻合系統
PVPh與新穎兩性團聯共聚物P2VP-b-PEO摻合系統的相型態及特殊正偏差之Tg-組成相依性亦在本研究中作一深入的討論。DSC單一Tg 的現象證明了此一系統為一相容的系統,另外OM、SEM、NMR 的結果亦對DSC所提供判定相容的證據作了再一次的佐證。當利用Kwei 方程式對P2VP-b-PEO/PVPh 之Tg-組成相依性作一描述並與文獻中P2VP/PVPh的結果相比對下,可發現P2VP-b-PEO/PVPh有著較小的q值(P2VP-b-PEO/PVPh的q為120而P2VP/PVPh的q為160),此結果意指P2VP-b-PEO/PVPh系統的分子間作用力比P2VP/PVPh為弱。IR與NMR之光譜則顯現出氫鍵作用力存在於P2VP-b-PEO的側鏈砒碇基團與PVPh的酚基之間,此強作用力並造成了熱行為上之正偏差現象。利用IR氫氧吸收帶的分析可估計出不同摻合物間其平均氫鍵強度之強弱趨勢為P2VP/PVPh > P2VP-b-PEO/PVPh > PEO/PVPh,由於PEO對PVPh間的氫鍵強度小於P2VP對PVPh的強度,由此趨勢可確認在P2VP-b-PEO/PVPh摻合物中, PEO團聯鏈段亦對於整體的作用力強度有所供獻。另外,當P2VP與PEO兩高分子有著跟P2VP-b-PEO中兩團聯鏈段相同分子量時,此P2VP/PEO兩成分系統亦可由DSC與OM的結果證明為一相容的系統,而三成分的(P2VP/PEO)/PVPh系統也被發現為一相容的系統並有著與P2VP-b-PEO/PVPh相類似的正偏差Tg-組成相依性與作用力現象。





英文摘要 Abstract

The miscibility and interactions in blends of poly(4-vinyl phenol) (PVPh) with aryl polyesters or amphiphilic block copolymers were investigated in this study. A new miscible blend of PVPh and poly(trimethylene terephthalate) (PTT) is reported. The blends exhibit a single composition-dependent glass transition temperature and homogeneous phase morphology. The Flory-Huggins interaction parameter (12) and the interaction energy density (B12) obtained by analyzing the melting point depression are of negative values (12= -0.74 and B=12 -7.76 cal cm-3), proving that the PVPh/PTT blends are miscible in the melted amorphous state. Fourier-Transformed infrared spectroscopy (FT-IR) provided evidence of hydrogen-bonding interactions between the two polymers. The miscibility of PVPh with PTT also resulted in a reduction in spherulite growth rate of PTT in the miscible blend. The Lauritzen-Hoffman model was used to analyze the spherulite growth kinetics, which showed a lower fold surface free energy (e) of the blends than that of the neat PTT. The decrease in the fold surface free energy is attributable to disruption of the PTT lamellae exerted by PVPh in an intimately interacted miscible state. The phase behaviors of the binary systems of PVPh and polyesters that process more than four CH2 groups on the polyesters’ backbones were also discussed. The systems of PVPh/poly(pentamethylene terephthalate) (PPT) and PVPh/poly(hexamethylene terephthalate) (PHT) blends were considered and the heterogeneous phase behavior also demonstrated by the microscopic observations of these systems, which indicated that the binary PVPh/aryl polyester blends were immiscible when the number of CH2 units on the polyester backbone exceeded four. Three ternary blend systems of PVPh and any two of three homologous aryl polyesters [poly(ethylene terephthalate) (PET), PTT, and poly(butylene terephthalate) (PBT)] were investigated by thermal and FT-IR characterizations. PVPh is miscible with any one of the polyesters in a binary blend system. However, this study concludes all of these three ternary blends are miscible. Quantitative estimation of the interactions yielded a negative overall interaction energy density (B= -5.74 cal cm-3), based on the analysis of melting point depression of the PBT/PVPh/PET ternary blend system. Similarly, Tg-composition analyses on two other ternary blend systems, PET/PVPh/PTT and PTT/PVPh/PBT, were performed. Comparison of the qualitative results shows that the interaction energy densities in the other two ternary blend systems are similarly negative and comparable to that of the PBT/PVPh/PET ternary blend system. The FT-IR results also support the qualitative findings among these three ternary blend systems. In the amphiphilic block copolymer/PVPh blends, phase behavior and miscibility with positive deviation from linear Tg-composition relationship in poly(2-vinylpyridine)-block-poly(ethylene oxide) (P2VP-b-PEO)/ PVPh, were investigated. The microscopic results and the nuclear magnetic resonance (NMR) proton spin-lattice relaxation times in the laboratory frame ( ) all agreed and confirmed with the miscibility Tg criterion provided by the differential scanning calorimeter (DSC) result. In comparison to the literature result on a homopolymer/homopolymer blend of P2VP/PVPh, the Kwei equation calculations on the P2VP-b-PEO/PVPh blend system yielded a lesser q value (q=120 for P2VP-b-PEO/PVPh vs. q=160 for P2VP/PVPh blends), inferring that the interaction strength in P2VP-b-PEO/PVPh is weaker than that in the P2VP/PVPh blends. The FT-IR and 13C NMR results revealed hydrogen-bonding interactions between the pendant pyridine group of P2VP-b-PEO and phenol unit in PVPh, leading to the noted positive deviation. By judging from the shifts of hydroxyl IR absorbance band, the average strength of H-bonding was estimated to be in a decreasing order of P2VP/PVPh > P2VP-b-PEO/PVPh > PEO/PVPh, indicating that the PEO block in the copolymer segments tended to defray the interaction strength in the P2VP-b-PEO/PVPh blends because of the relative weaker interaction between PEO and PVPh than that between P2VP and PVPh. Moreover, the miscibility between two homopolymers of P2VP and PEO of molecular weights equivalent to those in the copolymer segments, was demonstrated. Upon further mixing the PVPh into the P2VP/PEO blends, the as-obtained (P2VP/PEO)/PVPh ternary blends had similar thermal and interaction characteristics as the P2VP-b-PEO/PVPh blends.





論文目次 CONTENT

ABSTRACT (Chinese and English) I
ACKNOWLEDGEMENT (Chinese and English) V
CONTENT VIII
LIST OF TABLES XI
LIST OF FIGURES XII

CHAPTER 1 INTRODUCTION 1
1.1 Binary Blends with Hydrogen Bonding Interaction 1
1.2 Miscibility in Ternary Blends 3
1.3 Strong Specific Interaction in Blends of PVPh and Vinylpyridine-Containing Polymers 5

CHAPTER 2
THEORY
11
2.1 Thermodynamics for Miscibility in Binary and Ternary Polymer Blends 11
2.2 Theory of Melting Point Depression for Binary and Ternary Crystalline-Amorphous blends 14

CHAPTER 3 EXPERIMENT 20
3.1 Materials 20
3.2 Sample Preparation 21
3.3 Apparatus 23

CHAPTER 4 RESULTS AND DISCUSSION 27
4.1 Miscible Blends of Poly(4-vinyl phenol)/Poly(trimethylene terephthalate) 27
4.1-1 Thermal Analysis and Phase Morphology 27
4.1-2 Intermolecular Interactions 28
4.1-3 Spherulite Growth Analysis 31

4.2 Phase Morphology in Poly(4-vinyl phenol) /Poly(pentamethylene terephthalate) and Poly(4-vinyl phenol) / Poly(hexamethylene terephthalate) Blends 49
4.2-1 Observation of Phase Morphology 49
4.3 Thermal and Spectroscopy Studies on Ternary Miscibility and Phase Behavior in Blends Comprising Poly(4-vinyl phenol) and Two Aryl Polyesters 54
4.3-1 Morphology Observations and Thermal Behavior of PBT/PVPh/PET Blends 54
4.3-2 Determination of Overall Interaction Density for PBT/PVPh/PET Blends by Equilibrium Melting Temperature Depression Method 56
4.3-3 Miscibility in PET/PVPh/PTT and PTT/PVPh/PBT Ternary Blends 57
4.3-4 IR Characterization of Interactions 59
4.4 Miscibility with Positive Deviation in Tg-Composition Relationship in Blends of Poly(2-vinyl pyridine)-block-poly(ethylene oxide) and Poly(4-vinyl phenol) 83
4.4-1 Miscibility and Tg-Composition Relationship in P2VP-b-PEO/PVPh Blends 83
4.4-2 Spectroscopy Characterization on Interactions in the Blends 85
4.4-3 Morphological Evidences of Miscibility in P2VP-b-PEO/PVPh Blends 90
4.5 Miscibility in Poly(2-vinyl pyridine)/poly(ethylene oxide) Blends and in Poly(2-vinyl pyridine)/poly(ethylene oxide)/poly(4-vinyl phenol) Blends 103
4.5-1 Miscibility in Binary P2VP/PEO Blends 103
4.5-2 Miscibility in (P2VP/PEO)/PVPh Blends 105
4.5-3 IR Characterization on Interactions in the (P2VP/PEO)/PVPh Blends 106
CHAPTER 5 CONCLUSION 115


REFERENCES 117

APPENDIX PUBLICATIONS 124

VITA 126
參考文獻 1. Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F. J.; Liu, L. Z. Polymer 2001, 42, 9121.
2. Huang, Y. Y.; Chen, H. L.; Hashimoto, T. Macromolecules 2003, 36, 764.
3. Duran, R.; Ballauff, M.; Wenzel, M.; Wegner G. Macromolecules 1988, 21, 2897.
4. Zhao, J. Q.; Pearce, E. M.; Kwei, T. K. Macromolecules 1997, 30, 7119
5. Zhang, X. H.; Wang, Z. G.; Muthukumar M.; Han, C. C. Macromol Rapid Commun 2005, 26, 1285.
6. McGrath, K. J.; Roland, C. M.; Antonietti, M. Macromolecules 2000, 33, 8354.
7. He, Y.; Li, J. C.; Uyama, H.; Kobayashi, S.; Inoue, Y. J Polym Sci Pt B-Polym Phys 2001, 39, 2898.
8. Andrienko, D.; Leon, S.; Delle Site, L.; Kremer, K. Macromolecules 2005, 38, 5810.
9. Zhou, N.; Lodge, T. P.; Bates, F. S. J Phys Chem B 2006, 110, 3979.
10. Marquardt, J.; Thomann, R.; Thomann, Y.; Heinemann, J.; Mulhaupt, R. Macromolecules 2001, 34, 8669.
11. Ho, R. M.; Chang, C. C.; Chung, Y. W.; Chiang, Y. W.; Wu, J. Y. Polymer 2003, 44, 1459.
12. Hsu, J. Y.; Nandan, B.; Chen, M. C.; Chiu, F. C.; Chen, H. L. Polymer 2005, 46, 11837.
13. Zhu, L.; Huang, P.; Cheng, S. Z. D.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Wittmann, J. C.; Hsiao, B. S.; Yeh, F. J.; Liu, L. Z. Phys Rev Lett 2001, 86, 6030.
14. Yamaguchi, D.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 6506.
15. Han, Y. K.; Pearce, E. M.; Kwei, T. K. Macromolecules 2000, 33, 1321.
16. He, A. H.; Han, C. C.; Yang, G. S. Polymer 2004, 24, 8231.
17. Kim, Y. J.; Uyama, H.; Kobayashi, S. Macromolecules 2003, 36, 5058.
18. Van Casteren, I. A.; Van Trier, R. A. M.; Goossens, J. G. P.; Meijer, H. E. H.; Lemstra, P. J. J Polym Sci Part B Polym Phy 2004, 42, 2137.
19. Anantawaraskul, S.; Soares, J. B. P.; Wood-Adams, P. M. Macromol Chem Phys 2004, 205, 771.
20. Hou, S. S.; Graf, R.; Spiess, H.W., Kuo, P. L. Macromol Rapid Commun 2001, 22, 1386.
21. Ciardelli, F.; Cellai, C.; Puccu, A.; Regoli, L.; Ruggeri, G.; Tirelli, N.; Cardelli, C. Polym Adv Technol 2001, 12, 223.
22. Wu, J. H.; Koningsveld, R.; Wegner, G.; Lieser, G. Macromolecules 1996, 29, 1844.
23. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
24. Rameau, A.; Gallot, Y.; Marie P.; Farnoux, B. Polymer 1989, 30, 386.
25. Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym Eng Sci 1970, 10, 133.
26. Flory, P. J. J Am Chem Soc 1965, 86, 1833.
27. Flory, P. J. Discuss Faraday Soc 1970, 49, 7.
28. Coleman, M. M.; Painter, P. C. Prog Polym Sci 1995, 20,1.
29. Goh, S. H.; Siow, K. S. Polym Bull 1987, 17, 453.
30. Moskala, E. J.; Varnell, D. F.;Coleman, C. C. Polymer 1985, 26, 228.
31. Qin, C.; Pires, A. T. N.; Belfiore, L. A. Polymer Commun 1990, 31, 177.
32. Belfiore, L. A.; Pires, A. T.; Qic C 1991 Macromolecules 24, 666.
33. Moskala, E. J.; Howe, S. E.; Painter, P. C., Coleman, M. M. Macromolecules 1984, 17, 1671.
34. Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J Polym Sci Polym Phy Ed 1993, 31, 409.
35. Xing, P.; Dong, L.; An, Y.; Feng, Z; Avella, M.; Martuscelli, E. Macromolecules 1997, 30, 2726.
36. Landry, C. J. T.; Massa D. J.; Teegarden, D. M.; Landry, M. R.; Henrichs, P. M.; Colby, R. H,; Long, T. E. Macromolecules 1993, 26, 6299.
37. Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000, 33, 7529.
38. Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 2002, 43, 3335.
39. Wu, P. L.; Woo, E. M. J Polym Sci Part B Polym Phy 2002, 40, 1571.
40. Huang, J. M.; Chang, F. C. J Polym Sci Part B Polym Phy 2000, 38, 934.
41. Gilbert, M.; Hybart, F. J. Polymer 1972, 13, 327.
42. Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B. V.; Wunderlich, B. J Polym Sci Part B Polym Phy 1998, 36, 2499.
43. Yang, J.; Sidoti, G.; Liu, J.; Geil, P. H.; Li, C. Y.; Cheng, S. Z. D. Polymer 2001, 42, 7181.
44. Pyda, M.; Wunderlich, B. J Polym Sci Part B Polym Phys 2000, 38, 622.
45. Wu, J.; Schultz, J. M.; Samon, J. M.; Pangelinan, A. B.; Chuah, H. H. Polymer 2001, 42, 7161.
46. Huang, J. M.; Chang, F. C. J Appl Polym Sci 2002, 84, 850.
47. Martuscelli, E.; Pracella, M.; Wang, P. Y. Polymer 1984, 25, 1097.
48. Mandal, T. K.; Kuo, J. F.; Woo, E. M. J Polym Sci Part B Polym Phy 2000, 38, 562.
49. Kuo, S. W.; Liu, W. P.; Chang F. C. Macromol Chem Phys 2005, 206, 2307.
50. Scott, R. L. J Chem Phys 1949, 17, 279.
51. Tompa, H. Trans Faraday Soc 1949, 45, 1140.
52. Kwei, T. K.; Frisch, H. L.; Radigan, W.; Vogel, S. Macromolecules 1977, 10, 157.
53. Pomposo, J. A.; Cortazar, M.; Calahorra, E. Macromolecules 1994, 27, 252.
54. Goh, S. H.; Siow, K. S. Thermochim. Acta 1986, 105, 191
55. Min, E. E.; Chiou, J. S.; Barlow, J. W.; Paul, D. R. Polymer 1987, 28, 172.
56. Guo, Q. P. Eur Polym J 1996, 32, 1409.
57. Kuo, S. W.; Chan, S. C.; Wu, H. D.; Chang, F. C. Macromolecules 2005, 38, 4729.
58. Goh, S. H.; Ni, X. Polymer 1999, 40, 5733.
59. Yau, S. N.; Woo, E. M. Macromol Rapid Commun 1996, 17, 615.
60. Woo, E. M.; Tseng, Y. C. Macromol Chem Phys 2000, 201, 1877.
61. Lee, S.C.; Woo, E.M. J Polym Sci Part B Polym Phy 2002, 40, 747.
62. Liu, H. L.; Li, S. H.; Woo, E. M. J Polym Sci Part B Polym Phy 2006, 44, 1147.
63. Chang, L. L.; Woo, E. M. Macromol Chem Phys 2001. 202, 636.
64. Chang, L. L., Woo, E. M.; Liu, H. L. Polymer 2004, 45, 6909.
65. Su, C. C.; Lin, J. H.; Woo, E. M. Polym Int 2003, 52, 1209.
66. Chou, I. C.; Wu, P. L.; Woo, E. M. Colloid Polym Sci 2002, 280, 410.
67. Woo, E. M.; Chou, I. C.; Lee, L. T. Polymer 2002, 43, 4225.
68. Brannock, G. R.; Paul, D. R. Macromolecules 1990, 23, 5240.
69. Pomposo, J. A.; Calahorra, E.; Eguiazabal, I.; Cortazar, M. Macromolecules 1993, 26, 2104.
70. Jo, W. H.; Kwon, Y. K.; Kwon, I. H. Macromolecules 1991, 24, 4708.
71. Vanneste, M.; Groeninckx, G. Polymer 1994, 35, 1051.
72. Jeong, H. K.; Rooney, M. D.; David, J.; MacKnight, W. J.; Karasz, F. E.; Kajiyama, T. Polymer 2000, 41, 6671.
73. Hosokawa, M.; Akiyama, S. Polym J 1999, 31, 13.
74. Vivas de Meftahi, M.; Frechet, J. M. J. Polymer 1988, 29, 477.
75. Dai, J.; Goh, S. H.; Lee, S. Y.; Siow, K. S. Polym J 1994, 26, 905.
76. Wang, J.; Cheung, M. K.; Mi, Y. Polymer 2001, 42, 3087.
77. Aggarwal, S. L.; Ed. Block Polymers; Plenum Press: New York, 1970.
78. Molau, G. E.; Ed. Colloidal and Morphological Behavior of Block and Graf Copolymers; Plenum Press: New York, 1971.
79. Gallot, B. R. M. Adv Polym Sci 1978, 29, 85.
80. Förster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
81. Khandpur, A. K.; Förster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
82. Förster, S.; Plantenberg, T. Angew Chem-Int Edit 2002, 41, 689.
83. Bauer, A.; Hauschild, S.; Stolzenburg, M.; Förster, S.; Mayer, C. Chem Phys Lett 2006, 419, 430.
84. Strobl, G. R. “The Physics of Polymer, Concepts for Understanding Their Structures and Behavior ”, 2nd corrected edition, Springer.
85. Flory, P. J. Principles of Polymer Chemistry, Chapter XⅡ, Cornell University Press, Ithaca 1953.
86. Sperling, L. H. “Introduction to Physical Polymer Science”, John Wiley & Sons, Inc., New York 1992.
87. Robard, A.; Patterson, D. Macromolecules 1977, 10, 1021.
88. Christiansen, W. H.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1987, 34, 537.
89. Ameduri, B.; Prud’homme, R. E. Polymer 1988, 29, 1052.
90. Koklas, S. N.; Sotiropoulou, D. D.; Kallitsis, J. K.; Kalfoglou, N. K. Polymer 1991, 32, 66.
91. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
92. Quian, C.; Mumby, S. J.; Eichinger, B. E. Macromolecules 1991, 24, 1655.
93. Su, A. C.; Fried, J. R. Polym Eng Sci 1987, 27, 1657.
94. Nishi, T.; Wang, T. T. Macromolecules, 1975, 8, 909.
95. Hildebrand, J. H.; Scott, R. L. The Solubility of Nonelectrolytes, Dover, New York, 1964.
96. Barlow, J. W.; Paul, D. R. Ann Rev Mater Sci 1981, 11, 299.
97. Paul, D. R.; Barlow, J. W. Polymer 1984, 25, 487.
98. Shah, V. S.; Keitz, J. D.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1986, 32, 3863.
99. Kwei, T. K.; Frisch, H. L.; Radigan, W.; Vogel, S. Macromolecules 1977, 10, 157.
100. Woo, E. M.; Barlow, J. W.; Paul, D. R. J Appl Polym Sci 1984, 29, 3837.
101. Harris, J. E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1982, 27, 839.
102. Aubin, M.; Prud’homme, R. E. Macromolecules 1980, 13, 365.
103. Hauschild, S.; Borchert, U.; Lipprandt, U.; Rank, A.; Schubert, R.; Förster, S. Small 2005, 1, 1177.
104. Schmidt-Rohr, K.; Spiess, H. W. Multidimentional Solid-State NMR and Polymers, Chapter X, Academic Press, London 1996.
105. Kuo, Y. H.; Woo, E. M. J Polym Sci Part B Polym Phys 2004, 41, 2394.
106. Olabishi, O.; Robeson, L. M.; Shaw, M. T. Polymer-Polymer Miscibility, Academic Press, New York, 1979, chap 6, p 279.
107. Hoffman, J. D.; Weeks, J. J. Res Natl Bur Stand Sect A 1962, 66, 13.
108. Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, John Wiley, New York 1999.
109. Kuo, S. W.; Huang, C. F.; Chang, F. C. J Polym Sci Part B Polym Phys 2001 39, 1348.
110. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. In Treatise on Solid State Chemistry, Hannay NB, Ed, Plenum Press, New York, 1976, vol 3, chap 7.
111. Li, D.; Brisson, J. Polymer 1998, 39, 793.
112. Woo, E. M.; Yau, S. N. Macromolecules 1997, 30, 3626.
113. Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Painter, P. C.; Coleman, M. M. Polymer 1994, 35, 5379.
114. Chang, L. L.; Woo, E. M. J Polym Sci Part B: Polym Phys 2003, 41, 772.
115. Kwei, T. K. J Polym Sci Polym Lett Ed 1984, 22, 307.
116. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 5224.
117. Lee, J. Y; Painter, P. C.; Coleman, M. M. Macromolecules 1988, 21, 954.
118. Lin-Vien, D.; Colthup, N. B.; Fateley, W. G..; Grasselli, J. G. “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules”, Academic Press, Boston, 1991.
119. McBrierty, V. J.; Douglass, D. C. J Polym Sci Macromol Rev 1981, 16, 295.
120. Clauss, J.; Schmidt-Rohr, K. W. H. Acta Polym 1993, 44, 1.
121. Gordon, M.; Taylor J. S. J Appl Chem 1952, 2, 493.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw