進階搜尋


 
系統識別號 U0026-0812200911561663
論文名稱(中文) 自來水中木頭味物質β-cyclocitral之來源及去除之研究
論文名稱(英文) Distribution and treatment of woody-like odorant "β-cyclocitral" in drinking water
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 王奕軒
研究生(英文) Yi-Hsuan Wang
電子信箱 p5693109@ccmail.ncku.edu.tw
學號 p5693109
學位類別 碩士
語文別 中文
論文頁數 130頁
口試委員 口試委員-王根樹
口試委員-蔣本基
口試委員-葉宣顯
口試委員-曾怡禎
指導教授-林財富
中文關鍵字 β-cyclocitral  β-胡蘿蔔素加氧脢(β-carotene oxygenase)  微囊藻(Microcystis)  嗅覺氣相層析儀(Sensory GC)  固相微萃取法(Solid-phasemicroextraction) 
英文關鍵字 Solid-phase micro-extraction (SPME)  Microcystis  β-cyclocitral  Sensory GC  β-carotene oxygenase 
學科別分類
中文摘要 本研究探討代表性臭味物質-cyclocitral在代表性湖庫中之產生及分佈特性,及其氧化處理可能性。研究中分成四個部份,包括藻華水中臭味種類之鑑定、臭味物質濃度與微囊藻之相關性、金門太湖水庫中臭味物質之流佈情形、以及臭味物質之氧化特性等。
研究中首先以(Flavor profile analysis, FPA)、固相微萃取法(solid-phase microextraction, SPME)配合氣相層析質譜儀(GC/MS),以及氣相層析嗅覺分析儀(Sensory GC),鑑定金門太湖藻華產生的臭味類型及臭味物質,並且以顯微鏡鏡檢水體中藻相及針對微囊藻進行計數(cell counting)。研究中發現微囊藻華中產生之主要揮發性臭味物質為木頭味物質β-cyclocitral、腥味物質6-Methyl-5-Hepten-2-ol及2,4-Decadienal、藥草味物質2-cyclohexene-1-one、土味物質Geosmin、及其他腐敗酸臭味等,其中木頭味物質β-cyclocitral是微囊藻藻華水體中之最主要臭味物質,而其產生濃度與水體中微囊藻數量具有正相關性。
為了瞭解其他藻類與水體中β-cyclocitral濃度的相關性,因此在實驗室培養純化之微囊藻(Pcc7820)、球囊藻(Chlorella sp.)、顫藻(Oscillatoria sp.)、舟形藻(Narvicula sp.),並且分析其生長期間產生之β-cyclocitral濃度變化,實驗中發現培養中的微囊藻能產生大量的β-cyclocitral,平均產量為16 fg/cell,其他藻類之培養基中並無法產生大量的β-cyclocitral。
太湖取水口多次不同深度的採樣中發現,在春天水溫較高時(20~25°C),β-cyclocitral濃度及微囊藻數量在水面之濃度較高,在湖底的濃度較低,但是在冬天水溫低時(<20°C),臭味物質2-MIB、Geosmin、及β-cyclocitral濃度與微囊藻數量在不同水深之間並沒有明顯的變化情形。太湖不同湖邊位置採樣結果發現,太湖之風向會影響微囊藻華出現的位置,上浮的微囊藻會隨著風向往某個方向的岸邊累積成藻華的現象,並且在微囊藻華中臭味物質β-cyclocitral濃度分別高達1,500 μg/L,Geosmin也有50 ng/L以上的濃度,而微囊藻的數量也高達6×108 cells/mL,並且也發現β-cyclocitral的濃度與水中的微囊藻數量具有正相關性,但是β-cyclocitral與水體中總微囊藻毒素並沒有明顯的正相關性。
對於β-cyclocitral氧化實驗發現,高錳酸鉀雖然對於去離子水中的β-cyclocitral去除效果良好,但是對於原水中β-cyclocitral的去除反而不佳,而氯雖然對於去離子水中的β-cyclocitral沒有明顯的氧化力,但是在原水氧化實驗中發現,氯反而可以有效地控制及去除水體中β-cyclocitral的濃度,此部分差異待後續更詳細之研究。




英文摘要 The distribution and treatment of a typical odorant and metabolite from Microcystis, -cyclocitral, in several reservoirs were investigated in this study. This study is consisted of four parts, the identification of the odorants in algal bloom water, the relationships between the odorant and algal cell density, the diurnal and spatial and distribution of the odorant in Tai-Lake, and the oxidation characteristics of the odorant.
Two sensory methods, flavor profile analysis (FPA) and solid-phase micro-extraction (SPME) coupled with gas chromatograph/mass spectrometry detector (GC/MSD) were employed to identify the odor types and corresponding odorants in the water of Tai-Lake, Kinmen. The major volatile odorants in the Microcystis bloom include a woody odor compound, β-cyclocitral, two fishy odor compounds, 6-methyl-5-hepten-2-ol and 2,4-decadienal, a herbal odorant compound, 2-cyclohexene-1-one, a earthy odorant compound, geosmin. Among the odorants detected, β-cyclocitral is the major odorant present in the algal bloom of Microcystis, and the concentrations well correlated with the cell concentrations of Microcystis.
To characterize the production of β-cyclocitral in different algae, purified cyanobacteria, Microcystis Aeruginosa PCC7820 and Oscillatoria sp,, a green alga, Chlorella sp., and a diatom, Narvicula sp., were incubated in the laboratory and were analyzed for a few odorants. Microcystis Aeruginosa PCC7820 was the only one that produces high concentration of β-cyclocitral at 16 fg/cell. All other algae only produce minor amount of β-cyclocitral in the experiments.
The water samples at different depths near the intake of Tai-Lake suggested that the concentrations of β-cyclocitral and Microcystis spp. changed with time and water depth. In late spring where water temperature was at 20-25°C, the concentrations of β-cyclocitral and Microcystis spp. were higher near the water surface. However, in winter time where the temperature was less than 20°C, the concentration of 2-MIB, geosmin, and β-cyclocitral, and Microcystis spp. remained almost constant at different water depths. In addition, the occurrences of algal blooms were relevant to the wind direction, mostly concentrated in the downwind shores. In the algal bloom samples, up to 1,500 μg/L of β-cyclocitral and 50 ng/L of geosmin, and 6×108 cells/mL of Microcystis spp. were detected. The concentration of β-cyclocitral well correlated to the cell density of Microcystis spp. in the samples, and however, did not correlate to the microcystin concentration in the samples.
The oxidation experiments suggested that β-cyclocitral can be easily oxidized by permanganate in de-ionized water, but were more resistant in raw water . For chlorination, β-cyclocitral was very resistant in de-ionized water, and was much easier to be oxidized in raw water. The discrepancy of the oxidation of β-cyclocitral by chlorine and permanganate in de-ionized water and raw water suggested that further study is needed to understand the reaction mechanisms.




論文目次 目錄
頁數
中文摘要I
英文摘要III
誌謝V
目錄VI
表目錄X
圖目錄XI

第一章 前言1
1-1 研究緣起1
1-2 研究目的2

第二章 文獻回顧-3
2-1 自來水中常出現的臭味3
2-2 自來水中臭味物質之控制方法11
2-3 木頭味物質β-cyclocitral16
2-4藻類代謝物19
2-5優養水體及藍綠藻藻華中之常見之臭味物質23

第三章 實驗設備與方法25
3-1臭味物質之化學分析方法27
3-1-1實驗試劑27
3-1-2實驗設備27
3-1-3實驗方法28
3-2 嗅覺氣相層析儀(Sensory GC)30
3-2-1 實驗設備30
3-2-2 實驗方法30
3-3 臭味物質之感覺分析法嗅覺層次分析法 (Flavor Profile Analysis, FPA)32
3-3-1 實驗設備32
3-3-2 實驗方法32
3-4 藻類培養34
3-4-1 實驗設備34
3-4-2 藻類分離純化及培養方法37
3-5 藻類計數方法39
3-5-1 濾膜濃縮法39
3-5-2 血球計數器43
3-6 金門太湖藻華之臭味種類及及其來源之實驗流程45
3-7 氧化實驗方法47
3-7-1 氧化實驗藥品與儀器47
3-7-2 高錳酸鉀氧化實驗47
3-7-3 加氯氧化實驗47
3-7-4 氯及高錳酸鉀之濃度標定及分析47
3-8 藻類毒素化學分析方法簡介50

第四章 結果與討論

4-1 以儀器及嗅覺方法分析金門太湖水體中之臭味物質52
4-1-1 氣相層析嗅覺分析儀(Sensory GC)出流時間測試52
4-1-2 金門太湖水庫微囊藻藻華之臭味物質分析結果57
4-1-3 β-cyclocitral之臭味閾值測試62
4-2 水中臭味物質之分析條件探討64
4-2-1 SPME最佳萃取條件評析64
4-2-2環境樣品中β-cyclocitral保存時間測試68
4-3 不同藻類之β-cyclocitral產生量70
4-3-1 微囊藻(標準藻株Pcc7820)71
4-3-2 顫藻(Oscillatoria sp.)75
4-3-3 球囊藻(Chlorella sp.)77
4-3-4 舟形藻(Navicula sp.)80
4-3-5 小結84
4-4 β-cyclocitral於水庫中流佈85
4-4-1 金門太湖中β-cyclocitral之流佈情形85
4-4-2 金門太湖中β-cyclocitral與微囊藻毒的相關性92
4-4-3 南部地區水庫之β-cyclocitral濃度流佈94
4-5 以氧化劑去除β-cyclocitral之初步研究97
4-5-1 以氯(chlorine)及高錳酸鉀(KMnO4)氧化β-cyclocitral
之結果97
4-5-2 高錳酸鉀氧化β-cyclocitral之動力98
4-5-3 高錳酸鉀氧化β-cyclocitral後可能產生之臭味物質種類101
4-5-4 以氯及高錳酸鉀氧化太湖原水之初步研究104
4-5-5 太湖淨水廠對臭味物質處理效能108
第五章 結論與建議
5-1 結論111
5-2 建議113
參考文獻114
附錄127
自述130


表目錄
頁數
表2-1 五種土霉味物質之分子結構及分子量7
表2-2 2-MIB及Geosmin於不同溫度下之臭味閾值8
表2-3 水中常造成魚腥臭的微生物及魚腥臭種類9
表2-4 淨水程序常用之氧化劑對臭味物質之去除效果及優缺點14
表3-1 FPA強度單位的表示33
表3-2 BG-11 藍綠藻培養基35
表3-3 BG 11微量金屬溶液(Trace metals solution)35
表3-4 矽藻培養基36
表3-5 矽藻培養基之維他命溶液36
表3-6 LC/MS中五種型式微囊藻毒素之停留時間與特徵m/z值50
表4-1 水體中常見的藻類產生臭味物質之GC/MS及sensory GC出流時間比較55
表4-2 太湖表水之FPA聞測臭味種類及強度58
表4-3 β-cyclocitral之嗅覺閾值測試結果63
表4-4 以FPA聞測分析培養之純藻產生之氣味71
表4-5 單位藻細胞產生各種臭味物質量83
表4-6 太湖中不同位置之微囊藻數量與風向之關聯性90

圖目錄
頁數
圖2-1 臭味輪4
圖2-2 β-cyclocitral之結構式18
圖2-3 不同濃度之β-cyclocitral的臭味描述及強度關係曲線18
圖2-4 β-胡蘿蔔素經加氧脢催化氧化形成 β-cyclocitral19
圖3-1 整體實驗流程圖26
圖3-2 固相微萃取法裝置圖(SPME)29
圖3-3 嗅覺氣相層析儀(Sensory GC)與氣相層析儀(GC/MS)的設備圖31
圖3-4 金門太湖表水藻類計數樣品之過濾濃縮方法流程42
圖3-5 藻華表水之臭味及其來源實驗流程圖46
圖3-6 高錳酸鉀標準濃度檢量線49
圖4-1 去離子水之GC/MS及Sensory GC嗅覺分析圖53
圖4-2 吸附纖維之GC/MS及Sensory GC嗅覺層析圖54
圖4-3 常見的藻類產生臭味物質之GC/MS及Sensory GC嗅覺分析圖56
圖4-4 太湖藻華表水GC/MS及Sensor GC嗅覺分析圖61
圖4-5 金門太湖之微囊藻(Microcysits spp.)照片62
圖4-6(a) SPME於不同時間及水浴溫度之吸附動力曲線66
圖4-6(b) SPME於不同時間及水浴溫度之吸附動力曲線66
圖4-6(c) SPME於不同時間及水浴溫度之吸附動力曲線67
圖4-6(d) SPME於不同時間及水浴溫度之吸附動力曲線67
圖4-6(e) SPME於不同時間及水浴溫度之吸附動力曲線68
圖4-7 β-cyclocitral及Geosmin於4°C之保存時間測試69
圖4-8 微囊藻之臭味物質生長動力曲線73
圖4-9微囊藻細胞數與β-cyclocitral之相關性74
圖4-10微囊藻之葉綠素a與β-cyclocitral之相關性74
圖4-11純化培養的顫藻77
圖4-12顫藻之臭味物質生長動力曲線圖76
圖4-13球囊藻之臭味物質生長動力曲線圖78
圖4-14球囊藻之細胞數與β-cyclocitral之相關性79
圖4-15球囊藻之葉綠素a與β-cyclocitral之相關性79
圖4-16舟形藻臭味物質生長動力曲線82
圖4-17太湖取水口不同時間及水深之臭味物質濃度變化87
圖4-18太湖取水口不同時間不同水深之微囊藻數量88
圖4-19太湖中不同位置之微囊藻數量與風向之關聯性90
圖4-20金門太湖之β-cyclocitral與微囊藻數量之相關性91
圖4-21微囊藻毒與β-cyclocitral之相關性93
圖4-22南部地區水庫表水之臭味物質濃度與微囊藻數量96
圖4-23不同劑量之氯及高錳酸鉀對β-cyclocitral之氧化去除結果98
圖4-24高錳酸鉀氧化β-cyclocitral之動力情形100
圖4-25高錳酸鉀氧化β-cyclocitral後之GC/MS及Sensory GC嗅覺分析圖102
圖4-26 GC/MS及Sensory GC對去離子水之嗅覺層析圖103
圖4-27 GC/MS及Sensory GC對β-cyclocitral標準品之層析圖譜103
圖4-28 不同劑量的次氯酸鈉對太湖原水中臭味物質去除情形106
圖4-29 不同劑量的高錳酸鉀對太湖原水中臭味物質去除情形108
圖 4-30 太湖淨水廠之淨水單元對臭味物質及微囊藻細胞之去除效能110
參考文獻 參考文獻

Aaronson, S. , Dhawale, S.W. , Patni, N. J., Deangelis, B., Frank, O. and Baker, H. (1977), The cell content and secretion of water-soluble vitamins by several freshwater algae. Archives of Microbiology, Vol. 112, No. 1, pp. 57-59.
Aaronson, S., Berner, T. and Dubinsky, Z. (1980), Microalgae as a source of chemicals and natural products. In algae biomass: production and use. Edited by G. Shelef and C.J. Seder. New York: Elsevier-North Holland Biomedical Press.
Ashitani, K., Hishida, Y., Fujiwara, K. (1988), Behavior of musty odorous compounds during the process of water treatment. Water Science & Technology., Vol. 20, No. 8/9, pp. 261-267.
Berg, K., Carmichael, W.W., Skulberg, O.M., Benested, C. and Underlal, B. (1987), Investigation of a toxin water bloom of Microcystis aeruginosa (cyanophyceae) in lake Akersvatn, Norway, Hydrobiologia, Vol. 144, pp. 97-103.
Boelenes, M.H. & Van Gemert, L.J. (1987), Organoleptic properties of aliphatic aldehydes. Perfumer & Flavorist, 12:31.
Bruchet, A., Duguet J.P., and Suffe I.H. (2004), Role of oxidants and disinfectants on the removal, masking and generation of tastes and odours. Reviews in Environmental Science and Biotechnology, Vol. 3, No. 1, pp. 33-41
Bruchet, A., N’ Guyen D.K., Mallevialle, J. & Anselme C. (1989), Identification and behaviour of iodinated haloformmedicinal odour. Sem. Proc.: Identification and treatment of taste and odour compounds, AWWA, Ann. Conf. Los Angeles, CA.
Burlingame, G.A. Muldowney, J.J. & Maddrey, R.E. (1992), Cucumber flavour in Philadelphia’s drinking water. Jour. AWWA, Vol. 84, No.8, pp. 92-97.
Burttschell, R.L. et al. (1959), Chlorine derivatives of phenol causing taste and odor. Jour. AWWA, Vol. 51, No.2, pp.205.
Carlucci, A.F., and P.M. Bowes. (1970), Production of Vitamin B12, Thiamin, and Biotin by phytoplankton. Journal of Phycology ., Vol. 6, No. 4, pp. 351-357.
Carmichael, W.W., Eschedor, J.T., Patterson, G.M.L. and Moore, R.E. (1988), Toxicity and partial structure of a heptatoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand, Applied and Environmental Microbiology, Vol. 54, pp.2257-2263.
Carmichael, W.W. (1992), Cyanobacteria secondary metabolites-The cyanotoxins. J. Appl. Bacteriol. 72: 445-459.
Chambers, E. and Robel, A. (1993), Sensory sharacteristics of selected species of Freshwater fish in retail distribution. Journal of Food Science., Vol. 58, No. 3, pp. 508.
Chance V. Lauderdale, Henry C. Aldrich, AngelaS. Lindner. (2004), Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water. Water Research., Vol. 38, pp. 4135-4142.
Chorus, I., Niesel, V., Fastner, J., Wiedner, C., Nixdorf, B., and Lindenschmidt, K. (2001), Environmental factors and microcystin levels in waterbodies. In cyanotoxins-occurrence, causes, consequences, ed. I. Chorus, pp. 159-177. Berlin: Springer-Verlag.
Tucker, C.S. (2000), Off-Flavor problems in aquaculture. Reviews in fisberies science, Vol. 8, No. 1 , pp. 45-88.
Cotsaris, E., Bruchet, A., Mallevialle J. and Bursill D.B. (1995), The Identification of odorous metabolites produced from algae monocultures, Water Science & Technology., Vol. 31, No. 11, pp.251-258.
Collins, R.P., and Kalnins, K. (1965), Volatile Constituents Produced by the Algae synura pretesenii., I. The carbonyl fraction . Lloydia, Vol.28, pp.48-52.
Croft, M.T., Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005), Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. Nov 3; 438 (7064) : 33-5.
Daniela, R. et al. (2004), Microcystin-producing blooms—a serious global public health issue. Ecotoxicology and Environmental Safety. Vol. 59, pp.151-163.
Dietrich, M. and Hoehn, R.C. (1995), Oxidation of odorous and nonodorous algal metabolites by permanganate, chlorine, and chlorine dioxide., Water Science & Technology., Vol. 31, No. 11, pp.223-228.
Duguet, J.P., Bruchet A & Mallevialle J. (1989), New advances in oxidation processes: The use of the ozone/hydrogen peroxide combination for the micropollutants removal in drinking water. Proc. IWSA Conf. ”Organic Micropollutants”. Barcelona.
Duguet, J.P., Mallevialle, J., Ho, J. & Suffet I.H. (1995), Oxidation processes chlorine and chloramines .In: Suffet IH, Mallevialle J & Kawczynski E(Eds) Advances in Taste-and-Odour Treatment and Control (pp 75-113). AWWARF-Lyonnaise des Eaux, 3.
Federal Register. November (1979), National interim primary drinking water regulations;Control of Trihalomethanes in drinking water. Final Rule, Vol. 44, No. 231, pp.68624-68642.

Ginzburg, B.(1998), Identification of oligosulfide odorous compounds and their source in the lake of galilee. Water Research. Vol. 32, No. 6, pp.1789-1800.
Glaze W.H. (1987), Drinking water treatment with ozone. Environment Science & Technology., Vol. 21,No. 3, pp. 224-230.
Glaze, W.H. et al. (1990), Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. Jour. AWWA, 82:79-84.
Graham M.R., Summers R.S. Simpson M.R. and Macleod b.w. (2000), Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters., Water Research, Vol. 34, pp. 2291-2300.
Guadagni, D.G.; Buttery, R.G.;& Okano, S.(1963), Odour thresholds of Some organic compoundsassociated withfood flavours. Journal of the Science of Food and Agriculture, Vol. 14, No. 10, pp. 761.
Grimm, C.C., Lloyd, S.W., Batista, R. and Zimba, P.V. (2000), Using Microwave Distillation-solid-phase microextraction-gas Chromatography - mass spectrometry for analyzing fish tissue. Journal of Chromatographic Science., 38:289-296.
Hargesheimer, E.E., and Watson, S.B. (1996), Drinking water treatment options fortaste and odor control. Water Research., Vol. 30, pp. 423-1430.
Hayes, K.P., Burch, M.D., (1989), Odorous compounds associated with algal blooms in south Australian waters. Water Research., Vol. 23, No. 1, pp. 115-121.
Henning, M., Rohrlack, T., Kohl, J.-G., (2001), Responses of Dapnhia galeata fed with Microcystis strains with and without microcystins. In: Chorus, I. (Ed.), Cyanotoxins-Occurrence, Causes, Consequences. Springer, Berlin, pp. 266-280.
Hrudey, S.E., Gac, A., Daignault, S.A. (1988), Odorous aldehydes produced by disinfectant reaction with common amin acids. Poster presentation at the AWWA Ann. Conf., Orlando, Fla.
Jenkins, D., Medsker, L.L. and Thomas, J.F. (1967), Odorous compounds in natural waters: some sulfur compounds associated with blue-green algae. Environment Science and Technology., Vol. 1, pp.731-735.
Jones, G.J. and Korth, W., (1995), In situ production of volatile odor compounds by river and reservoir phytoplankton populations in Australia. Water Science Technology., Vol. 31, No. 11, pp. 145-151.
Jones, G.L., Bourne, D.G., Blakely, R.L. and Doelle, H. (1994), Degradation of cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins., Vol. 2, pp.228-238.
Juttner, F. (1976), β-cyclocitral and alkanes in Microcystis (Cyanophyceae). Zeitschrift fur Naturforschungl. 31:491-495.
Juttner, F. (1983), Volatile odorous excretion productions of algae and their occurrence in the natural aquatic environment. Water Science Technology., Vol. 15, No. 6/7, pp.247-257.
Juttner, F. (1984), Dynamics of the Volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Applied and Environmental Microbiology., Apr, pp. 814-820.
Juttner, F. and Brigitte Hoflacher.(1985), Evidence of β-carotene7,8(7”,8”) oxygenase (β-cyclocitral, crocetindial generating) in Microcystis. Archives of Microbiology., Vol. 141, No. 4, pp.337-343.
Juttner, F. (1995), Physiology and biochemistry of odorous compounds from Freshwater cyanobacteria and algae. Water Science Technology., Vol. 31, no.11, pp. 69-78.
Juttner F. (2005), Off-flavours in water : hydroxyketones and β-ionone derivatives as new odour compounds of freshwater cyanobacteria. Flavour And Fragrance Journal., 20 : 387-394.
Kathryn Walsh, Gary J. Jones, and R. Hugh Dunstan. (1998), Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry., Vol. 49, No. 5, pp. 1227-1239.
Kearns, K.D. Hunter, M.D. (2001), Toxin-producing Anabaena flosaquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microbial ecology, Vol. 42, No. 1, pp.80-86.
Kenefick, S.L., Hrudey, S.E., Prepas, E.E., Motkosky, N., Peterson H.G. (1992), Odorous substances and cyanobacterial toxins in prairie drinking water sources. Water Science & Technology., Vol. 25, pp.147-154.
Kevin K.S., Margaret E.D. (2005), Cyanobaceria and earthy/musty compounds found in commercial catfish (Ictalurus punctatus) ponds in the Mississippi Delta and Mississippi-Alabama Blackland Prairie. Water Research., vol. 37, 2807-2814.
Kikuchi, T., et al. (1986), Odorous components of the diatom, syneda rumpens Kuta, isolated from the water in lake Biwa. Identification of n-hexanal, Yakugaku Zasshi, 92(12),1567.
Krasner S.W. & Barrett S. (1984 ), Aroma and flavour characteristics of free chlorine and chloramine. Proc. AWWA WQTC. AWWA, Denver, CO.
Kurmayer, R., Juttner, F., (1999), Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. Journal of Plankton Research., 21, 659-683.
Lalezary, S., Pirbazari, M., McGuire, M.J. (1986), Oxidation of five earthy-musty taste and odor compounds. Jour. AWWA., 78:62-69.
Lalezary-Craig, S., Pirbazari, M., Dale, M.E., Tanaka, T.S., and McGuire, M.J. (1988), Optimizing the removal of geosmin and 2-methylisoborneol by powered activated carbon. Jour. J. Am. Water Works Assoc., 80, 73-80.
Lin, T.F., Wong J.Y., and Kao, H.P. (2002), Correlation of musty odor and 2-MIB in two drinking water treatment plants in southern Taiwan. Sci. Total ENV., 289, 225-235.
Lin, T.F., Yen, H.K., Su, Y.T., Wang, I.S., Tung. S.C., and Tseng, I.C (2005b), Diurnal concentration change of microcystins and 2-MIB in Tai Lake, The First International Conference on Sustainable Water Environment: Water Resource and Quality Management, November 2-4, Taiwan, R.O.C.
Lin, T.F., Yen, H.K., Tseng, I.C., and Hsu, M.H. (2005a) Estimating microcystin concentrations in two reservoirs and water works in south Taiwan using 2-MIB as a surrogate compound, the seventh IWA Symposium on off-flavours in the Aquatic Environment, Cornwall (Canada), October 2-7.
Lloyd, S.W., Lea, J.M., Zimba, P.V. and Grimm, C.C. (1998), Rapid analysis of geosmin and 2-methylisoborneol in water using solid-phase micro extraction procedures. Water Research., Vol. 32, 2140-2146.
Mallevialle, J. & Suffet, I.H., eds. (1987), Identification and treatment of tastes and odors in drinking water. AWWA Research Foundation and AWWA, Denver, Colo.
Martin, J.F. and Suffet, I.H. (1992), Chemical etiologies of off-flavor in Channel Catfish Aquaculture. Water Science & Technology., Vol. 25, No.2, pp. 73-79.
Martin T. C., Andrew D, L., et al. (2005), Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. Vol. 348(3), 90-93.
McGuire, M.J. et al. (1978), The Effects of Oxidizing Agents on the Removal of Trace Organics From Drinking Water. Proc. Intl. Ozone Institute, Ozone Technology Conference, Los Angeles, Calif.(May 23, 1978)
McKnight, D.M., and Morel, F.M.M. (1979), Release of weak and strong copper-complexing agents by algae. Limnol. And Oceanogr., 24(5):823~837.
Miyoshi Ikawa, John, J. S., James, F. H., (2001), Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia., Vol. 443, pp.19-22.
Newcombe, G., Nicholson, B. (2004) Water treatment Options for Dissolved Cyanotoxins , Journal of Water Supply: Research and Technology-Aqua., 227-239.
Newcombe, G. (2005), Treatment of cyanobacteria and cyanotoxins in drinking water, proceedings of the first internal conference on sustainable water environment: Water Resource and Quality Management., Nov.2-4, 2005, Taipei, Taiwan(ROC)
Nigel J.D., Graham, V.E., Wardlaw, R. P., and Jia-Qian Jiang (1999) The significance of algae as Trihalomethane precursors , Water Science & Technology, Vol. 37, No. 2, pp.83-89.
Nureni, O. Olawore et al. (2005), Chemical composition of the leaf and fruit essential oils of Murraya paniculata(L.) Jack. (Syn. Murraya exotica Linn.). Flavour and Fragrance Journal., vol. 20, pp. 54-56.
Palenik, B., and Morel, F.M.M. (1990), Elemental composition of Diatoms grown in chemically defined media. Comp. Biochem. Physiol., 50B:579-583.
Paul W, Rodriguez-Hernandez, M., Baker, L., Sommerfeld, M., (2005), Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, Vol.37, pp. 4899-4912.
Persson, P.E. (1983), Off-flavor in aquatic ecosystems-An introduction, Water Science & Technology, Vol. 15, No. 1, pp. 2.
Peterson, H.G., Hrudey, S.E., Cantin, I.A., Perley, T.R., and Kenefick, A.L. (1995), Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon Flos-Aquae after exposure to water treatment chemicals. Water Research., Vol. 29, No. 6, pp. 1515-1523.
Robert A. Andersen (2005), Algal Culturing Techniques. Chapter 5 : Sterilization and Sterile Technique. & Chapter 6 : Traditional Microalgae Isolation Techniques.
Rashash, D., Hoehn, R., Dietrich, A., and Grizzard, T. (1996), Identification and control of odorous algae metabolites, American Water Works Research Foundation, unpublished report, Denver, CO.
Robarts, R.D. and Zohary, T. (1987), Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria, NZ J. Mar. Freshwater Res., Vol. 21, pp. 391-399.
Saglam. H, Gozler, T., Kivcak, B. (2001), Volatile compounds from Haplophyllum myrtifolium. Chemistry of Natural Compounds., Vol. 37, No. 5, pp.. 442-444.
Slater, G.P., Block, V.C. (1983), Volatile compounds of the cyanophyceae-a review. Water Science & Technology., Vol. 15, No. 6/7, pp. 181-190.
Slater, G.P. and Blok, V.C. (1983), Isolation of and identification of odorous compounds from a lake subject to cyanobacteria blooms. Water Science & Technology., 15:229-240.
Suffet, I.H., Wable, O. (1995), Removal of taste-and odor compounds by activated carbon, In advances in taste-and-odor treatment and control, Ed. By Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Colorda, USA.
Suffet, I.H.; Corado, Ana; Chou, David; McGuire, Michael J.; Butterworth, Steve.(1996). AWWA taste and odor survey. Journal of the American Water Works Association; 88 (4) : 168-80, Apr. 1996. Ilus.
Suffet, I.H., Khiari, D. and Bruchet, A.(1999), The drinking water taste and odor wheel for themillenium: Beyond geosmin and 2-methylisoborneol. Water Science & Technology, Vol. 40, No. 6, pp. 1-13.
Suffet, I.H., Linda Schweitzer & Djanette Khiari.(2004), Olfactory and chemical analysis of taste and odor episodes in drinking water supplies. Re/views in environmental Science & Bio/Technology., Vol. 3: pp. 3-13.
Sugiura and Kazunori Nakano (1996), Causative microorganisms for musty odor occurrence in the eutrophic Lake Kasumigaura. Hydrobiologia., Vol. 434, No. 1-3
Susan B. Watson. (2004), Aquatic Taste And Odor: Aprimary signal of drinking-water integrity. Journal of Toxicology and Environmental Health., part A, 67:1779-1795,.
Tang, E.P.Y., Tremblay, R., and Vincent, W.F. (1997), Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature?. Journal of Phycology., 33:171-181.
Paul V.Z., Casey, C.G. (2003), A synoptic survey of musty/muddy odor metabolites and microcystin toxin occurrence and concentration in southeastern USA channel catfish (Ictalurus punctatus Ralfinesque) production ponds. Aquaculture., Vol. 218, pp. 81-87.
Tatson, S., Satchwill T., Dixon, E., and McCauley, E. (2001) Under-ice blooms and source-water odour in a nutrient-poor reservoir : Biological, ecological and applied perspectives, Freshwater biology., 46, 1533-1567.
Wayne W. Carmichael (2001), Health effects of toxin-producing cyanobacteria: "The CyanoHABs". Human and Ecological Risk Assessment., Vol. 7, No. 5 / September-October pp. 1393-1407.
Yagi, M., Kajino, M., Matsuo, U., Ashitani, K., Kita, T. (1983), Water Science and Technology, Vol. 15, No. 6-7, pp. 311-321
Yen, H.K., Lin, T.F., Tseng, I.C., Tung, S.C., Hsu, M.H., and Liao, P.C., (2004), Occurrence of algal toxins and odorants in two reservoirs in south Taiwan, The 10th International Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan.
Yen, H.K., Lin, T.F., Tseng, I.C., and Su, Y.T. (2005), Cyanobacteria toxins and toxin producers in nine drinking water reservoirs in Taiwan, The First IWA-ASPAC Conference, Singapore, July 10-15.
Young, C.C., Suffet, I.H., Crozes, G. and Bruchet, A. (1999), Identification of a woody-hay odor-causing compound in a drinking water supply. Water Science & Technology, Vol. 40, No. 6, pp. 273-278.
Zaguirre. I and W.D Taylor (2004), A guide to Geosmin-and MIB-Producing cyanobacteria in the United States , Water Science & Technology, Vol. 49, No. 9, pp. 19-24.
翁玉芬, (1993) 水中超微量有機異臭味物質Geosmin之分析及去除,國立交通大學環境工程研究所碩士論文。
林財富、張怡怡, (2002) 自來水配水管網中影響感官(味覺、嗅覺)物質之調查與改善,行政院環保署研究報告(EPA-91-U1J1-02-101)。
李俊德、陳是瑩(1985)澄清湖水源臭味控制方法之研究,國立成功大學環境工程研究報告第45號。
汪俊育(2000)南台灣代表性水源臭味問題之研究,國立成功大學環境工程系碩士論文。
何玉琦(2004)應用嗅覺與儀器方法分析水中臭味之研究,國立成功大學環境工程系碩士論文。
徐剛樹(1995)曝氣工程對鳳山及澄清湖水庫臭味及產臭味生物之影響。
陳重男(1993)高級處理對水中微量有機物去除效能評估:子題(二)自來水中有機異臭味物質之去除之研究,行政院環保署研究報告(EPA-82-E3-J1-09-03)。
陳郁仁(2001)前氧化劑對藻類去除影響之研究,國立成功大學環境工程系碩士論文。
李林,宋立榮,甘南琴等. 頂空固相微萃取-氣相色譜-質譜測定水中異味化合物. Chinese Journal of Analytical Chemistry. 第33卷.第 8期1058~1062 (2005)。
高肇藩, (1987) 給水工程。
童淑珠、徐孟鴻、楊世賢、林財富, (2003) 利用氧化劑去除2-MIB之研究, 第二十七屆廢水技術研討會。
陳是瑩、曾怡禎, (1986) 澄清湖藻類圖鑑。
日本水道協會, (1999) 生物起因の異臭味水對策の指針。
蘇郁婷, (2006) 台灣地區三種代表性飲用水系統中微囊藻毒素流佈之研究,國立成功大學環境工程系碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-07-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-07-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw