進階搜尋


 
系統識別號 U0026-0812200911525265
論文名稱(中文) 全域之最短時間爬升軌跡
論文名稱(英文) A Global Search for Minimum Time-to-Climb Trajectories
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 94
學期 2
出版年 95
研究生(中文) 林信賢
研究生(英文) Hsin-Hsien Lin
學號 p4693137
學位類別 碩士
語文別 中文
論文頁數 55頁
口試委員 口試委員-林穎裕
口試委員-陳正宗
指導教授-許棟龍
中文關鍵字 飛行力學  動態規劃法  最佳控制  最短時間爬升 
英文關鍵字 optimal control  minimum time-to-climb trajectory  flight mechanics  dynamic programming 
學科別分類
中文摘要 傳統上,最佳飛行軌跡分析,如坡度法或參數最佳化法,所得之收斂解難以被證明是唯一解,因此所得之最佳軌跡亦無法被證明是全域的最佳解。為解決此一困難,本論文將運動方程式之狀態變數分成若干個格點,再計算格點與格點間與所需之飛行時間。求出區域範圍內所有格點間之軌跡與飛行時間後,再以動態規劃法分析起始點至終端點間之最短時間軌跡所經過的格點,以得全域之最佳飛行軌跡。為驗證理論是否有效,本論文以一戰機之空氣動力數據作數值計算,在預設的初始條件與終端條件情況下,分析其最短時間爬升軌跡。

英文摘要 Traditionally, the convergent solutions obtained by using the methods of optimal trajectory analysis, such as gradient methods or optimal parameter methods, are very difficult to be proved to be unique. It means that the corresponding trajectories are not necessarily optimal globally.To overcome this difficulty, in this thesis,the state variables of the equations of motion are discretized to a number of grid points and the times of flight between each pair of grid points are computed. After the times of flight between all pairs of grid points are computed, a dynamic programming method is employed to determine the intermediate
grid points which are passed by the minimum-time trajectory from the initial grid point to the final grid point. The global optimal trajectory is then obtained by connecting the initial grid point, all the intermediate grid points, and the final grid points. To validate the theory, a set of aerodynamic data for a fighter are provided in this thesis to conduct the numerical simulations for the minimum time-to-climb trajectories.


論文目次 授權書
簽署人須知
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 ix

一、緒論 1
 1.1 研究動機 1
 1.2 文獻回顧 1
 1.3 研究方法 2
二、運動方程式 4
 2.1 座標系之定義 4
 2.2 運動方程式 5
三、動態規劃法之應用 9
 3.1 動態規劃法 9
 3.2 演算法 15
四、每一格點至其相鄰格點花費時間之分析 17
 4.1 等斜率飛行模式 17
   4.1.1 求解方法 18
   4.1.2 演算法 19
 4.2 線性時間負荷控制飛行模式 20
   4.2.1 求解方法 21
   4.2.2 演算法 22
五、最短時間爬升軌跡之分析 24
 5.1 等斜率飛行模式之爬升軌跡 25
 5.2 線性時間負荷控制飛行模式之爬升軌跡 32
 5.3 動態歸劃法與坡度法之比較 39
六、結論 45
參考文獻 46
附錄 49
 A、大氣密度、溫度與音速 49
 B、狀態變數之變分 50
 C、飛機空氣動力資料 53
自述
參考文獻 Connor, M. A.,"Optimization of a Lateral Turn at Constant Height," AIAA Journal, Vol.5, No.2, February 1967, pp.335-338.

Hedrick, J. K., and Bryson, A. E., Jr.,"Minimum Time Turns for a Supersonic Airplane at Constant Altitude," Journal of Aircraft, Vol.8, No.3, March 1971, pp.182-187.

Bryson, A. E., Jr., Denham, W. F., and Dreyfus, S. E.,"Optimal Programming Problems with Inequality Constraints I:Necessary Conditions for Extremal Solutions," AIAA Journal, Vol.1, No.11, November 1963, pp.2544-2550.

Denham, W. F., and Bryson, A. E., Jr.,"Optimal Programming Problems with Inequality Constraints II:Solution by Steepest-Ascent," AIAA Journal, Vol.2, No.1, January 1964, pp.25-34.

Jacobson, D. H.,"New Second-Order and First-Order Algorithms for Determining Optimal Control:A Differential Dynamic Programming Approach," Journal of Optimization Theory and Applications, Vol.2, No.6, 1968, pp.411-440.

Bryson, A. E., Jr., and Ho, Y. C.,"Applied Optimal Control," Hemisphere Publishing Co., New York, 1975.

許棟龍,「二階坡度法應用於最佳飛行軌跡問題」,國科會計畫報告,編號:NSC 84-2212-E-066-001,1995年7月。

何旅良,「應用二階坡度法結合攝動法以解最短時間飛行問題」,國立成功大學碩士論文, 1996。

Bryson, A. E., Jr., Desai, M. N., and Hoffman, W. C.,"Energy-State Approximation in Performance Optimization of Supersonic Aircraft,"Journal of Aircraft, Vol.6, No.6, November-December 1969, pp.481-488.

Ardema, M. D.,"Solution of the Minimum Time-to-Climb Problem by Matched Asymptotic Expansions,"AIAA Journal, Vol.14, No.7, July 1976, pp.843-850.

Ardema, M. D.,"Linearization of the Boundary-Layer Equations of the Minimum Time-to-Climb Problem,"Journal of Guidance and Control, Vol.2, No.5, September-October 1979, pp.434-436.

Kelley, H. J., Cliff, E. M., and Weston, A. V.,"Energy State Revisited," Optimal Control Applications and Methods, Vol.7, August 1986, pp.195-200.

Clements, J. C.,"Minimum-Time Tune Trajectories to Fly-to-Points," Optimal Control Applications and Methods, Vol.11, No.1, January-March 1990, pp.39-50.

Seywald, H.,"Optimal and Suboptimal Minimum Time-to-Climb Trajectories," AIAA Guidance, Navigation and Control Conference, Scottsdale, AZ, August 1-3, 1994, pp.130-136.

Rao, A. V.,"Application of a Dichotomic Basis Method to Performance Optimization of Supersonic Aircraft," Journal of Guidance, Control and Dynamics, Vol.23, No.3, May-June 2000, pp.570-573.

劉高享,「參數最佳化法應用於最短時間爬升軌跡之研究」,國立成功大學碩士論文, 2004。

Larson, R. E., and Casti J. L.,"Principles of Dynamic Programming, Part I," Marcel Dekker Inc., New York, U.S.A., 1978.

Smith, D. K.,"Dynamic Programming :A Practical Introduction,"Ellis Horwood., New York, U.S.A., 1991.

Bertsekas, D. P.,"Dynamic Programming and Optimal Control,Vol. I," Athena Scientific, Belmont, MA, U.S.A., 2000.

許棟龍,「大氣飛行之最佳軌跡課程講義」,國立成功大學航太研究所, 2000。

"U.S. Standard Atmosphere, 1976," National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, Washington, DC, U.S.A., 1976.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-06-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-06-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw