進階搜尋


 
系統識別號 U0026-0812200911523122
論文名稱(中文) 利用大腸桿菌為觸媒進行醋酸鹽電解之特性與應用
論文名稱(英文) THE CHARACTERISTICS AND APPLICATION OF BIOELECTROCATALYSIS ON ACETATE WITH ESCHERICHIA COLI AS THE CATALYST
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 王永福
研究生(英文) Yung-Fu Wang
學號 p5890104
學位類別 博士
語文別 英文
論文頁數 110頁
口試委員 口試委員-曾四恭
指導教授-加納 健司
口試委員-黃志彬
指導教授-鄭幸雄
口試委員-張祖恩
口試委員-張憲彰
口試委員-周澤川
中文關鍵字 大腸桿菌  醋酸氧化  微生物電化學  微生物燃料電池  醋酸感測電極 
英文關鍵字 Microbial fuel cell  Microbial electrochemistry  Acetate sensor  Acetate oxidation  Escherichia coli 
學科別分類
中文摘要 本研究以生物電化學方法,利用大腸菌為生物觸媒,進行醋酸電氣分解特性實驗。並將所得結果,應用於開發微生物型醋酸感測電極、利用醋酸為燃料之微生物燃料電池。茲將結果分述如下:

1. 本研究是利用大腸桿菌為觸媒,以人工之電子傳遞媒(Fe(CN)63−, 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0), 2,6-dichloro-indophenol, or 2-methyl-1,4-naphthoquinone) 取代氧氣成為電子接受者之情形下,進行醋酸電解反應。研究顯示,經牛肉萃取物、葡萄糖或醋酸培養後之大腸桿菌皆有醋酸及葡萄糖之電解能力。結果中指出,在高濃度電子傳遞媒情況下,大腸桿菌之醋酸電解都會受到抑制,整個抑制現象可以用基質競爭性抑制來做解釋。利用定電位法可以求得各電子傳遞媒對微生物之半飽和常數、反應常數及抑制常數的近似值;結果顯示Q0 在小於50 μM 情況下,是最有效率之電子傳遞媒。但Fe(CN)63−最適合作為醋酸電極中之電子傳遞角色,因為Fe(CN)63−擁有較高之抑制常數,甚至在有氧情況下,依然可以做為電子接受者。

2. 本研究中也成功地開發出微生物型醋酸感測器。製作方法是將大腸桿菌固定在有修飾活性碳網之玻璃碳電極表面,以Fe(CN)63–為電子傳遞媒,做為電子從微生物傳遞至電極之媒介物。在pH 6-8、溫度在40 oC以下,可在100 μM 到 600 μM 間呈現線性關係,同時在100秒左右即可量側完成。此電極對於醇類(乙醇、異丁醇、丙醇及甘油)、有機酸(甲酸及丁酸)及若干醣類(肝醣、麥芽糖及蔗糖)無顯著應答信號。除此之外,此電極可在有氧及無氧情形下進行醋酸量測工作。

3. 本研究亦利用大腸桿菌微生物觸媒,針對無需電子傳遞媒及分隔膜之微生物燃料電池進行研發。在批次培養條件下,微生物燃料電池之產能效率逐漸增加,其中在外加電組為100萬歐姆情況下,可以快速啟動微燃料電池組,在3天內達到最大輸出功率(3.42 mW/m2),此時之電壓電流值分別為0.237 V and 14.4mA/m2。此外,利用極譜分析法可以得知,該微生物燃料電池之反應限制步驟,關鍵可能在於鹽橋所形成之內電阻所致。這些參數將有助於往後微生物燃料電池之操作使用。


英文摘要 In this thesis, the characteristics of acetate electrocatalysis with mediators were investigated. Under these results, the E. coli-base acetate sensor was also developed. For energy recycle from acetate oxidation, the mediator-less E. coli-base microbial fuel cell was also studied. The follows are the conclusions of them:

1. Bioelectrocatalytic oxidation of acetate was investigated under anaerobic conditions by using Escherichia coli K-12 (IFO 3301) cells cultured on aerobic media containing poly-peptone, glucose or acetate as the sole carbon source. It was found that all E. coli cells cultured on the three media work as good catalysts of the electrochemical oxidation of acetate as well as glucose with Fe(CN)63−, 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0), 2,6-dichloro-indophenol, or 2-methyl-1,4-naphthoquinone as artificial electron acceptors (mediators). Acetate-grown E. coli cells exhibited the highest relative activity of the acetate oxidation against the glucose oxidation. On the other hand, all the artificial electron acceptors used work as inhibitors for the catalytic oxidation of acetate at increased concentrations. The inhibition phenomenon can be interpreted in terms of competitive substrate inhibition as a whole. Apparent values of Michaelis constant, catalytic constant, and inhibition constant were evaluated by amperometric methods. Q0 is an effective artificial mediator as evidenced by a large reaction rate constant between the cell and Q0 at least at low concentrations (<50 μM). However, Fe(CN)63− is a promising mediator in biosensor applications because the inhibition constant is very large and it works as an electron acceptor even under aerobic conditions.

2. In this research, the microbial sensor for acetate detection was developed. The E. coli (K-12) cultured on acetate medium could be the catalyst for acetate detection. The acetate sensor was constructed by the E. coli fixed on glassy carbon with carbon felt. Fe(CN)63– was the electron shuttle between bacteria and electrode during acetate measurement. At pH range from 6 to 8 and temperature below 40 oC, the sensor could be used for determination of acetate from 100 μM to 600 μM and the 90% response time was less than 100s. The sensor had low responses to alcohols (ethanol, isopropanol, butanol, and glycerol), carboxylic acids (formate and butyrate) and some saccharides (galactose, maltose, and sucrose). In addition, acetate also could be measured under anaerobic and aerobic conditions by the acetate sensor. Therefore, the E. coli based acetate sensor could be applied widely to acetate detections for environmental and fermentation samples.

3. The mediator-less and separated membrane-less microbial fuel cells with E. coli as the catalyst were also investigated. In three batch tests, all the output powers of the MFCs increased day after day. The one operated with external resistance (1000 K Ω) could start up within three days to reach the maximum output (3.42 mW/m2) and its start-up time is quickest than the other ones (100 Ω and 9.87 K Ω). Under the maximum energy output condition, the output voltage and current were 0.237 V and 14.4 mA/m2. Through the polarization test with different additional external resistances, the limitation step during larger output current occurred should be the internal resistance in salt bridge. These results will contribute the operation indexes for the quick start-up and maintenance of MFCs in the further applications.


論文目次 中文摘要........................................I
Abstract………………..III
致謝....................................... VI
Contents……………………………………….………………….VII
List of Figures…………………………………XI
List of Tables………………………………………..….XII
Chapter 1 Introduction…………………………....1-1
Chapter 2 Literature review……………………………….2-1
2.1 Mediated bioelectrocatalysis……………… 2-1
2.1.1 Biocatalysts (oxidoreductases, redox proteins)...2-1
2.1.2 Electron shuttles (Mediators)………………2-3
2.1.3 Applications of bioelectrocatalysis with microorganisms as the catalyst…2-8
2.1.3.1 Electrochemical microbial biosensors…………2-9
2.1.3.2 Microbial fuel cells (MFCs)……………………2-9
2.2 The role of acetate……………………….....2-15
2.2.1 The formation of acetate…………………...2-15
2.2.2 The oxidation of acetate………………………2-15
Chapter 3 Materials and methods………………………3-1
3.1 Cell incubation…………………………………3-1
3.2 The reagents……………………………………………3-2
3.3 Equipment preparation…………………...…3-3
3.3.1 The preparation of reference electrode……3-3
3.3.2 The component of elecrtro-analysis cell……………3-4
3.3.3 The component of electrolysis cell for bulk electrocatalysis…….3-5
3.3.4 The component of microbial fuel cell…………3-6
3.4 Water quality measurement……………………3-7
3.4.1 Method for VFAs analysis…………………….3-7
3.4.2 Method for alcohols analysis……………………..3-7
3.4.3 pH measurement…………………………….3-7
Chapter 4 Escherichia coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators………………………………………………………….4-1
4.1 Experimental methods…………………………….………4-2
4.1.1 Cultivation of E. coli cells and Chemical reagents…………………………4-2
4.1.2 Electrochemical measurements………………………..4-2
4.1.3 Bulk electrolysis………………………..4-3
4.2 Results…………………………………………4-4
4.2.1 Catalytic activity of E. coli cells for the oxidation of acetate and glucose with an artificial electron acceptor………………………..4-4
4.2.2 Comparison of artificial electron acceptors in the acetate oxidation………………….4-7
4.2.3 Mediated bioelectrocatalytic oxidation of acetate by E. coli cells with Q0 ……….…4-10
4.2.4 Kinetic parameters of the acetate oxidation by E. coli with artificial mediators……..4-12
4.2.5 Bulk electrolysis with the inhibitory and non-inhibitory concentration of VK3……...4-16
4.3 Discussions .……………………………………….4-19
Chapter 5 Amperometric Determination of Acetic Acid with Escherichia coli -based Acetate Sensor……….. 5-1
5.1 Experimental methods…………………………………5-1
5.1.1 Cultivation of E. coli cells……………………..5-1
5.1.2 Preparing the GC-carbon felt-E. coli electrode (GCE electrode)…………………..….5-2
5.1.3 Chemical reagents…………………………………..5-3
5.1.4 Electrochemical measurements…………………………..5-3
5.2 Results……………………………………………….5-4
5.2.1 Acetate oxidation by E. coli with Fe(CN)63– as the electron acceptor under aerobic and anaerobic conditions…………………………….5-4
5.2.2 Effect of carbon felt………………………………………...5-5
5.2.3 Effect of temperature, concentration of Fe(CN)63– and pH on sensor response………5-7
5.2.4 Selectivity of the acetate sensor……………..5-9
5.2.5 Calibration curves of acetate detection……………5-10
5.3 Conclusions………………………………………………5-12
Chapter 6 Electricity production from mediator- and membrane-less microbial fuel cells with Escherichia coli K-12 as the catalyst…………………………………….6-1
6.1 Experimental methods………………………………………6-1
6.1.1 Escherichia coli cultivation…………………6-1
6.1.2 Construction of Microbial fuel cells and their operations……………………………..6-1
6.1.3 Measurement and calculation of catalytic current and power density………………....6-2
6.1.4 Water quality Analyses……………………………6-3
6.2 Results……………………………………………………….6-4
6.2.1 The start up of microbial fuel cell………6-4
6.2.2 The evaluations on the individual performances of anode and cathode in the MFC with 1MΩ external resistance………………………………………...6-9
6.2.3 The performance of Pt wire as the electrode in cathode………………………6-10
6.3 Conclusions……………………………………………………6-13
Chapter 7 Conclusions and recommendations ………………7-1
Reference…………………………………………………………8-1
Appendix……………………………………………………...8-12
參考文獻 [1] M.T. Madigan, J.M. Martinko, J. Parker, Brock Biology of Microorganisms, 10th ed., Pearson Education, Inc, Upper Saddle River, NJ, 2003.

[2] G.F. Dancey, B.M. Shapiro, The NADH dehydrogenase of the respiratory chain of Escherichia coli, J. Biol. Chem. 251 (1976) 5921–5928.

[3] Y. Ogino, K. Takagi, K. Kano, T. Ikeda, Reactions between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and NAD+, J. Electroanal. Chem. 396 (1995) 517-524.

[4] H.C. Chang, A. Ueno, H. Yamada, T. Matsue, I. Uchida, Immobilized-enzyme electrode for nicotinamide adenine dinucleotide (reduced form)(NADH) sensing and application to the kinetic studies of NADH dependent dehydrogenases, Analyst 116 (1991) 793-796.

[5] K. Takagi, K. Kano, T. Ikeda, Flavin-mediated two-way bioelectrocatalysis of lactate dehydrogenase reaction combined with diaphorase reaction, Chem. Lett. (1996) 11-12.

[6] M. Torimura, K. Kano, T. Ikeda, T. Ueda, Spectroelectrochemical characterization of quinohemoprotein alcohol dehydrogenase from Gluconobacter suboxydans, Chem. Lett. (1997) 525-526.

[7] T. Ikeda, D. Iswantini, Y. Ito, K. Kano, Electrochemical analysis of glucose dehydrogenase activity exhibited by Escherichia coli cell, Anal. Sci. 17 (2001) 285-256.

[8] K. Miki, T. Ikeda, H. Kinosbita, Electrocatalytic activity of cytochrome c for the reduction of nitric oxide. Electroanalysis 6 (1994) 703-705.

[9] K. Kano, K. Mori, B. Uno, T. Kubota, T. Ikeda, M. Senda, Voltammetric and spectroscopic studies of pyrroloquinoline quinone coenzyme under neutral and basic conditions, Bioelectrochem. Bioenerg 23 (1990) 227-238.

[10] K. Kano, K. Mori, B. Uno, T. Kubota, T. Ikeda, M. Senda, Voltammetric determination of acid dissociation constants of pyrroloquinoline quinone and its reduced form under acidic conditions, Bioelectrochem. Bioenerg 24 (1990) 193-201.

[11] A. Kuriyama, M. Arasaki, N. Fujieda, S. Tsujimura, K. Kano, T. Ikeda, Separator-less one-compartment bulk electrolysis with a small auxiliary electrode and its application to spectroelectrochemistry, Electrochemistry 72 (2004) 484-486.

[12] K. Kano, Redox potentials of proteins and other compounds of bioelectrochemical interest in aqueous solutions, Rev. Polargr 48 (2002) 29-46.

[13] D. Iswantini, K. Kano, T. Ikeda, Kinetics and thermodynamic of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activited enzyme in Escherichia coli cells, Biochem. J. 350 (2000) 917-923.

[14] T. Ikeda, H. Matsubara, K. Kato, D. Iswantini, K. Kano, M. Yamada, Electrochemical monitoring of in vivo reconstitution of glucose dehydrogenase in Escherichia coli cells with externally added pyrroloquinoline quinone, J. Electroanal. Chem. 449 (1998) 219-224.

[15] D. Iswantini, K. Kato, K. Kano, T. Ikeda, Electrochemical measurements of glucose dehydrogenase activity exhibited by Escherichia coli cells; effects of the additions of pyrroloquinoline quinone, magnesium or calcium ions and ethylenediaminetetraacetic acid, Bioelectrochem. Bioenerg 46 (1998) 249-254.

[16] K. Kato, N. Taniguchi, Y. Yamamoto, K. Kano, T. Ikeda, A whole cell electrode for ethanol based on the respiratory reaction in cytoplasmic membrane of Acetobacter aceti, Denki Kagaku 64 (1996) 1259-1260.

[17] T. Ikeda, K. Kato, H. Tatsumi, K. Kano, Mediated catalytic current for the oxidation of ethanol produced by Acetobacter aceti cells suspended in solution, J. Electroanal. Chem. 440 (1997) 265-269.

[18] T. Ikeda, K. Kato, M. Maeda, H. Tatsumi, K. Kano, K. Matsushita, Electrocatalytic properties of Acetobacter aceti cells immobilized on electrodes for the quinone-mediated oxidation of ethanol, J. Electroanal. Chem. 430 (1997) 197-204.

[19] H. Tatsumi, K. Kano, T. Ikeda, Kinetic analysis of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors, J. Phys. Chem., B 104 (2000) 12079–12083.

[20] H. Tatsumi, K. Takagi, M. Fujita, K. Kano, T. Ikeda, Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier, Anal. Chem. 71 (1999) 1753-1759.

[21] T. Ikeda, K. Takagi, H. Tatsumi, K. Kano, Electrochemical control of hydrogenase action of Desulfovibrio vulgaris (Hildenborough), Chem. Lett. (1997) 5-6.

[22] K. Takayama, K. Kano, T. Ikeda, Mediated electrocatalytic reduction of nitrate and nitrite based on the denitrifying activity of Paracoccus denitrificans, Chem. Lett. (1996) 1009-1010.

[23] Y.F. Wang, S.S. Cheng, S. Tsujimura, T. Ikeda, K. Kano, Escherichia coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators, Bioelectrochemistry (2006) in press.

[24] S. Tsujimura, M. Fujita, H. Tatsumi, K. Kano, T. Ikeda, Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH, Phys. Chem. Chem. Phys. 3 (2001) 1331-1335.

[25] S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano, T. Ikeda, Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2’-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem. 496 (2001) 69-75.

[26] S.I. Yamazaki, T. Kaneko, N. Taketomo, K. Kano, T. Ikeda, Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer, Biosci. Biotechnol. Biochem. 66 (2002) 2100–2106.

[27] H. Tatsumi, H. Nakase, K. Kano, T. Ikeda, Mechanistic study of the autoxidation of reduced flavin and quinone compounds, J. Electroanal. Chem. 443 (1998) 236-242.

[28] K. Kano, K. Takagi, Y. Ogino, T. Ikeda, Quinone-mediated bioelectrochemical reduction of NAD(P)+ catalyzed by flavoproteins, Chem. Lett. (1995) 589-590.

[29] T. Ikeda, K. Kano, Review-bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells, Biochim. Biophys. Acta 1647 (2003) 121-126.

[30] D.K. Newman, R. Kolter, A role for excreted quinones in extracellular electron transfer, Nature 405 (2000) 94-97.

[31] S.D. Roller, H.P. Bennetto, G.M. Delaney, J.R. Mason, S.L. Stirling, C.F. Thurston, J. Chem. Technol. Biotechnol., 34B, 3 (1984).

[32] I.H. Segel, Enzyme Kinetic, John Wiley & Sons, Inc., New York, NY, 1993, pp. 819–830.

[33] K. Kano, T. Ikeda, Bioelectrocatalysis, powerful means of connecting electrochemistry to biochemistry and biotechnology, Electrochemistry, 71 (2003) 86-99.

[34] T. Ikeda, T. Kurosaki, K. Takayama, K. Kano, Measurements of oxidoreductase-like activity of intact bacterial cells by an amperometric method using a membrane-coated electrode, Anal. Chem. 68 (1996) 192–198.

[35] R. Matsumoto, K. Kano, T. Ikeda, Theory of steady-state catalytic current of mediated bioelectrocatalysis, J. Electroanal. Chem 535 (2002) 37-40.

[36] J. Lee, N.T. Phung, I.S. Chang, B.H. Kim, H.C. Sung, Use of acetate for enrichment of elecrtrochemically active microorganisms and their 16S rDNA analysis, FEMS Microbiol. Lett. 223 (2003) 185–191.

[37] R.L. Meyer, L.H. Larsen, N.P. Revsbech, Microscale biosensor for measurement of volatile fatty acids in anoxic environments, Appl. Environ. Microbiol. 68 (2002) 1204-1210.

[38] M. Hikuma, T. Kubo, T. Yasuda, Amperometric determination of acetic acid with immobilized Trichosporon brassicae, Anal. Chim. Acta. 109 (1979) 33-38.

[39] S. Subrahmanyam, N. Kodandapani, K. Shanmugam, K. Moovarkumuthalvan, D. Jeyakumar, T. V. Subramanian, Development of a sensor for acetic acid based on Fusarium solani, Electroanalysis. 13 (2001) 1275-1278.

[40] G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenase as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials, J. Electroanal. Chem. 443 (1998) 155-161.

[41] S. Tsujimura, K. Kano, T. Ikeda, Electrochemical oxidation of NADH catalyzed by diaphorase conjugated with poly-l-vinylimidazole complexed with Os(2,2’-dipyridylamine)2Cl, Chem. Lett. (2002) 1022-1023.

[42] S. Tsujimura, M. Kawaharada, T. Nakagaea, K. Kano, T. Ikeda, Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH, Electrochem. Commun. 5 (2003) 138-141.

[43] D.H. Park, J.G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol. 66 (2000) 1292-1297.

[44] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, B.H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol. 30 (2002) 145-152.

[45] D.R. Boond, D.R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol 69 (2003) 1548-1555.

[46] D.E. Holmes, D.R. Bond, R.A. O’Neil, C.E. Reimers, L.R. Tender, D.R. Lovley, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microb. Ecol. 48 (2004) 178-190.

[47] B.H. Kim, H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang, J. Lee, N.T. Phung, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol. 63 (2004) 672-681.

[48] N.T. Phung, J. Lee, K.H. Kang, I.S. Chang, G.M. Gadd, B.H. Kim, Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences, FEMS Microbiol. Lett. 233 (2004) 77-82.

[49] H.S. Park, B.H. Kim, H.S. Kim, H.J. Kim, G.T. Kim, M. Kim, I.S. Chang, Y.K. Park, H.I. Chang, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe 7 (2001) 297-306.

[50] C.A. Pham, S.J. Jung, N.T. Phung, J. Lee, I.S. Chang, B.H. Kim, H. Yi, J. Chun, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett. 223 (2003) 129-134.

[51] M.J. Cooney, E. Roschi, I.W. Marison, Ch. Comninellis, U.V. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol. 18 (1996) 358-365.

[52] D.E. Holmes, D.R. Bond, D.R. Lovley, Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes, Appl. Environ. Microbiol. 70 (2004) 1234-1237.

[53] I. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Energy accumulation and improved performance in microbial fuel cells, J. Pow. Sour. 145 (2005) 253-256.

[54] I.A. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Technol. 37 (2005) 238-245.

[55] D.R. Lovley, E.J.P. Phillips, Organic matter mineralization with reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol. 51 (1986) 683-689.

[56] D.R. Bond, D.R. Lovley, Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans, Appl. Environ. Mircobiol. 71 (2005) 2186-2189.

[57] D.R. Lovley, E.L. Blunt-Harris, Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction, Appl. Environ. Microbiol. 65 (1999) 4252-4254.

[58] A. Kappler, M. Benz, B. Schink, A. Brune, Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment, FEMS Microbiol. Ecol. 47 (2004) 85-92.

[59] Z. Struyk, G. Sposito, Redox properties of standard humic acids, Geoderma 102 (2001) 329-346.

[60] J. Hejzlar, J. Chudoba, Microbial polymers in the aquatic environment-II, Wat. Res. 20 (1986) 1217-1221.

[61] M. Esparza-Soto, P. Westerhoff, Biosorption of humic and fulvic acids to live activited sludge biomass, Wat. Res. 37 (2003) 2301-2310.

[62] A. Jahn, P.H. Nielsen, Cell biomass and exopolymer composition in sewer, Wat. Sci. Technol. 37 (1998) 17-24.

[63] M. Hafidi, S. Amir, J. C. Revel, Structural characterization of olive mill waste-water after aerobic digestion using elemental analysis, FTIR and 13C NMR, Process Biochem 40 (2005) 2615-2622.

[64] K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol. 70 (2004) 5373-5382.

[65] B. Min, S. Cheng, B.E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Wat. Res. 39 (2005) 1675-1686.

[66] M. Grzebyk, G. Poźniak, Microbial fuel cells (MFCs) with interpolymer cation exchange membranes, Separ. Purif. Technol 41 (2005) 321-328.

[67] J.K. Jang, T.H. Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho, B.H. Kim, Construction and operation of a novel mediator- and membrane- less microbial fuel cell, Process Biochem. 39 (2003) 1007-1012.

[68] H. Moon, I.S. Chang, J.K. Jang, B.H. Kim, Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation, Biochem. Engin. J. 27 (2005) 59-65.

[69] H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol. 38 (2004) 2281-2285.

[70] S. Cheng, H. Liu, B.E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun. 8 (2006) 489-494.

[71] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in the microbial fuel cell, Electrochem. Commun. 7 (2005) 1405-1410.

[72] T. Nakagawa, S. Tsujimura, K. Kano, T. Ikeda, Bilirubin oxidase and [Fe(CN)6]3-/4- modified electrode allowing diffusion-controlled reduction of O2 to water at pH 7.0, Chem. Lett 32 (2003) 54-55.

[73] H.I. Park, D.K. Kim, Y.J. Choi, D. Pak, Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor, Process Biochem. 40 (2005) 3383-3388.

[74] K.B. Gregory, D.R. Bond, D.R. Lovley, Graphite electrode as electron donors for anaerobic respiration, Environ. Microbiol. 6 (2004) 596-604.

[75] A. Bergel, D. Féron, A. Mollica, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochem. Commun. 7 (2005) 900-904.

[76] G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameter affecting the performance of a mediator-less microbial fuel cell, Biosens. Bioelectron. 18 (2003) 327-334.

[77] B. Min, B.E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol. 38 (2004) 5809-5814.

[78] S.E. Oh, B.E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Wat. Res. 39 (2005) 4673-4682.

[79] B. Min, J.R. Kim, S.E. Oh, J.M. Regan, B.E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Wat. Res. (2006) in press.

[80] J. Niessen, U. Schöder, F. Scholz, Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch, Electrochem. Commun. 6 (2004) 955-958.

[81] L.M. Tender, C.E. Reimers, H.A. Stecher III, D.E. Holmes, D.R. Bond, D.A. Lowy, K. Pilobello, S.J. Fertig, D.R. Lovley, Harnessing microbially generated power on the seafloor, Nat. Biotechnol. 20 (2002) 821-825.

[82] K. Rabaey, W. Verstraete, Microbial fuel cell: novel biotechnology for energy generation, Trends Biotechnol. 23 (2005) 291-298.

[83] M.L.B.Da Silva, P.J.J. Alvarez, Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl. Environ. Microbiol. 70 (2004) 4720-4726.


[84] M. A. Dojka, P. Hugenholtz, S. K. Haack, N. R. Pace, Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation, Appl. Environ. Microbiol. 64 (1998) 3869-3877.

[85] S.J. Ajl, M.D. Kamen, Studies on the mechanism of acetate oxidation by Escherichia coli, J. Biol. Chem. 189 (1951) 845–857.

[86] C. Gilvarg, B.D. Davis, The role of the tricarboxylic acid cycle in acetate oxidation in Escherichia coli, J. Biol. Chem. 222 (1956) 307–319.

[87] S. Kumari, C.M. Beatty, D.F. Browning, S.J.W. Busby, E.J. Simel, G. Hovel-Miner, A.J. Wolfe, Regulation of acetyl coenzyme a systhetase in Escherichia coli, J. Bacteriol. 182 (2000) 4173–4179.

[88] S. Kumari, R. Tishel, M. Eisenbach, A.J.Wolfe, Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli, J. Bacteriol. 177 (1995) 2878–2886.

[89] M.K. Oh, L.K. Rohlin, C. Kao, J.C. Liao, Global expression profiling of acetate-grown Escherichia coli, J. Biol. Chem. 277 (2002) 13175–13183

[90] J. Zhao, K. Shimizu, Metabolic flux analysis of Escherichia coli K-12 grown on 13C-labeled acetate and glucose using GC–MS and powerful flux calculation method, J. Biotechnol. 101 (2003) 101–117.

[91] D.R. Bond, D.R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol. 69 (2003) 1548–1555.

[92] S. Tsujimura, K. Kano, T. Ikeda, Bilirubin oxidase in multiple layer catalyzes four-electron reduction of dioxygen to water without redox mediators, J. Electroanal. Chem. 576 (2005) 113–125.

[93] R. Matsumoto, K. Kano, T. Ikeda, Theory of steady-state catalytic current of mediated bioelectrocatalysis, J. Electroanal. Chem. 535 (2002) 37–40.

[94] Y. Ito, S.I. Yamazaki, K. Kano, T. Ikeda, Escherichia coli and its application in a mediated amperometric glucose sensor, Biosens. Bioelectron. 17 (2002) 993–998.

[95] D.H. Park, J. Gregory Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol. 66 (2000) 1292–1297.

[96] K. Kato, K. Kano, T. Ikeda, Electrochemical characterization of carbon felt electrodes for bulk electrolysis and for biocatalyst-assisted electrolysis, J. Electrochem. Soc. 147 (2000) 1449–1453.

[97] K. Miki, T. Ikeda, S. Todoroki, M. Senda, Bioelectrocatalysis at NADdependent dehydrogenase and diaphorase-modified carbon paste electrodes containing mediators, Anal. Sci. 5 (1989) 269–274.

[98] F. Mizutani, Y. Hirata, S. Yabuki, S. Iijima, Flow injection analysis of acetic acid in food samples by using trienzyme/poly(dimethylsiloxane)-bilayer membrane-based electrode as the detector, Sens. Actuat. B 91 (2003) 195-198.

[99] F. Mizutani, T. Sawaguchi, Y. Sato, S. Yabuki, S. Iijima, Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)–bilayer- based sensor, Anal. Chem. 73 (2001) 5738-5742.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-06-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-06-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw