進階搜尋


 
系統識別號 U0026-0812200911505527
論文名稱(中文) 澎湖講美玄武質岩體風化作用之礦物學研究
論文名稱(英文) Weathering of Basaltic rocks from Chiangmei, Penghu: A mineralogical study
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 94
學期 1
出版年 95
研究生(中文) 黃品儒
研究生(英文) Pin-Ru Huang
電子信箱 ppiirruu19@yahoo.com.tw
學號 l4692112
學位類別 碩士
語文別 中文
論文頁數 212頁
口試委員 口試委員-蕭炎宏
指導教授-江威德
口試委員-楊懷仁
中文關鍵字 電子顯微鏡  風化作用  熱液蝕變  皂石  禾樂石  玄武岩  澎湖 
英文關鍵字 hydrothermal alteration  saponite  electron microscopy  halloysite  basalt  Penghu  weathering 
學科別分類
中文摘要   澎湖白沙島講美海崖剖面由下而上為具有不同低溫熱水及風化蝕變程度的多孔矽質玄武岩、紅土層、玄武質凝灰岩和柱狀鹼性玄武岩,後者底部有一淬冷層;此海崖下方之海蝕平臺另有一層更早期紅土化之多孔矽質玄武岩。本研究利用X光粉末繞射、X光螢光光譜儀、掃瞄式電子顯微鏡、穿透式電子顯微鏡、傅立葉紅外線光譜儀等方法分析該剖面之礦物種類、特性和顯微組織及岩石與礦物化學成份之變化,以瞭解其礦物蝕變特徵及機制。
  分析結果顯示早期低溫熱液蝕變作用使上層鹼性玄武岩橄欖石被皂石取代,方沸石取代基質物質;中層洋蔥狀矽質玄武岩體核心之基質蝕變成皂石,外殼則多數原生礦物皆已蝕變為黏土礦物。受後期風化作用影響,上層鹼性玄武岩淬冷層原生礦物普遍為黏土礦物所取代,惟皂石質黏土礦物相對較少,而生成蒙脫石及7Å禾樂石(球狀為主);中層矽質玄武岩之洋蔥狀外殼及岩體上部中早期熱液蝕變形成之皂石發生蒙脫石化及禾樂石化現象,原生礦物如普通輝石、頑火輝石和拉長石之假晶的組成變為由皂石、蒙脫石及7Å禾樂石(管狀為主)所構成之混合物,此等產物在紅土化過程中,失去其原生組織,皂石、蒙脫石逐漸減少,風化產物主要為7Å及10Å禾樂石(球狀為主)和氧化鐵,最終則以10Å含水禾樂石(球狀為主)和氧化鐵為主。上、中層蝕變玄武岩體間之凝灰岩亦明顯曾受低溫熱液及風化蝕變作用,形成紅色富皂石及氧化鐵和白色富禾樂石及蒙脫石之皂石-7Å禾樂石(管狀/球狀=~2/3)-蒙脫石混合物團粒;中層玄武岩風化紅土表面及裂隙中充填之蒙脫石-禾樂石(管狀、10Å為主)凝脂物可能為凝灰岩及上層玄武岩淬冷層之風化滲流膠體物質。全岩化學成份之矽、鋁、鈣、鈉變化趨勢主要受控於斜長石及膨潤石蝕變為禾樂石之程度。長石蝕變生成之黏土礦物相對於輝石生成之黏土礦物較為富鋁且較趨向二八面體型,顯示原生礦物種類及成份對次生黏土礦物組成有顯著影響。禾樂石生長形態與脫水狀態並未見有系統性之關聯性,但10Å禾樂石相對富集於風化較深之產物則是一個明確的趨勢。
英文摘要  A rock section consisting of three basaltic layers subjected to various degrees of hydrothermal alteration and weathering is outcropped at Chiangmei, Penghu Islands. The upper basaltic layer has a quench zone at its bottom superimposed on an altered tuffaceous layer, and at the respective top of the middle and lower tholeiitic layers, a lateritized soil layer was developed. Chemical, structural and microtextural characteristics of minerals and rock chemistry were analyzed by optical microscopy and XRD, XRF, SEM, TEM, and FTIR techniques to understand alteration features and mechanisms of minerals in the Chiangmei basaltic section.
 Replacements of olivine phenocrysts by saponite and matrix materials by analcime in the upper basaltic layer and groundmass by saponite in the core of spheroidally weathered basaltic body of the middle layer show evidence of early low-temperature hydrothermal alteration. In the subsequent weathering processes, the primary minerals in the quench zone of the upper basaltic layer were pervasively altered to form montmorillonite and 7Å halloysite (mainly spherical in shape) concurrent with a reduced amount of saponite. Montmorillonitization and halloysitization of early-formed hydrothermal saponite occurred in the onion skins and upper portion of weathered rocks in the middle basaltic layer. Pseudomorphic crystals of primary minerals such as augite, enstatite, and labradorite are composed of mixtures of saponite, montmorillonite, and 7Å halloysite (primarily tubular shape). Primary textures of such pseudomorphs were lost in concomitance with decreased proportions of saponite and montmorillonite and formation of an assemblage of 7Å and 10Å halloysites (principally spherical shape) and iron oxides during the lateriatization process. The final product consists mainly of 10Å halloysite (spherical shape) and iron oxides in the laterite. Formation of fragments or domains of red saponite- and iron oxide-rich and white halloysite- and montmorillonite-rich saponite-montmorillonite-7Å halloysite (tubular shape/spherical shape = ~2/3) mixtures is indicative of low-temperature hydrothermal alteration and weathering in the tuffaceous layer. White, montmorillonite-rich montmorillonite-10Å halloysite (mainly tubular) clay mixtures observed on the surface and in the pore space of the lateritic soils in the middle basaltic layer occurred probably as a result of the downward seepage of colloidal solutions from the superincumbent tuffaceous layer and quench zone during later stages of weathering. Variations of Si, Al, Ca, and Na in bulk-rock chemistry are primarily controlled by the extent of plagioclase and smectite halloysitization. Clay minerals formed by alteration of plagioclase are relatively Al-rich and akin to dioctahedral type as compared to those replacing pyroxenes. No evidence was found for a systematic correlation between the growth morphology and dehydration state of halloysite, but it is apparent that the 10Å halloysite occurred only in deeply weathered products.
論文目次 目錄
摘要 I
致謝 Ⅲ
目錄 VI
圖目錄 XI
表目錄 XIII

第1章 序論 1
1.1 前言 1
1.2 研究目的 4
第2章 地質背景 6
第3章 採樣地點及標本描述 11
第4章實驗方法 27
4.1 實驗流程 27
4.2 X光粉末繞射儀分析 27
4.2.1粉末繞射分析 27
4.2.2黏土礦物順向試片 31
4.3 偏光顯微鏡分析 33
4.4 掃瞄式電子顯微鏡分析 34
4.5 穿透式電子顯微鏡(TEM) 37
4.5.1 拋光薄片離子薄化試樣 38
4.5.2 粉末試樣 38
4.6 X射線螢光分析儀(XRF) 38
4.7 傅立業轉換紅外光譜(FTIR) 40
4.7.1 高嶺石族IR特徵吸收峰 40
4.7.2 有機質和氧化矽IR特徵吸收峰 41
4.7.3 膨潤石IR特徵吸收峰 43
第5章 結果 47
5.1 上層玄武岩與其淬冷層 47
5.1.1 原生礦物組合 47
5.1.2 岩象分析 51
5.1.3 次生礦物組合 55
5.1.4 黏土礦物型態 59
5.1.5 化學成分分析 64
5.1.6 綜合分析結果 69
5.2 凝灰岩 71
5.2.1礦物組成 71
5.2.2 岩象分析 74
5.2.3 黏土礦物型態 77
5.2.4 化學成分分析 78
5.2.5綜合分析結果 80
5.3 紅土裂隙中凝脂狀黏土 81
5.3.1 礦物組成 81
5.3.2 岩象分析 83
5.3.3 黏土礦物型態 83
5.3.4 化學成分分析 85
5.3.5 綜合分析結果 87
5.4 中層多孔玄武岩 87
5.4.1 原生礦物組合 87
5.4.2 岩象分析 90
5.4.3 次生礦物組合 93
5.4.4 黏土礦物形態 98
5.4.5 化學成分分析 104
5.4.6 綜合分析結果 111
5.5 與海水接觸中層多孔玄武岩 112
5.5.1 原生礦物組合 112
5.5.2 岩象觀察 115
5.5.3 次生礦物組合 121
5.5.4 黏土礦物型態 125
5.5.5 化學成分分析 131
5.5.6 綜合分析結果 135
5.6 下層玄武岩腐植岩 136
5.6.1 礦物組合 136
5.6.2 岩象觀察 138
5.6.3 黏土礦物型態 139
5.7 海蝕平臺的多孔玄武岩 141
5.7.1 原生礦物組合 141
5.7.2 黏土礦物組合 143
5.7.3 化學成分分析 146
5.7.4 綜合分析結果 147
5.8 澎湖講美剖面之礦物分佈綜合結果 148
5.8.1 上層玄武岩與其淬冷層 148
5.8.2 凝灰岩 148
5.8.3 紅土裂隙的黏土礦物 149
5.8.4 紅土化中層玄武岩 149
5.8.5 下層玄武岩 149
5.8.6 多孔玄武岩球狀風化礦物之分佈 151
第6章 討論 152
6.1 次生礦物之來源 152
6.1.1 上層玄武質岩體之次生礦物來源 152
6.1.2 紅土化中層玄武岩之次生礦物來源 155
6.1.3 海蝕平台下層玄武岩之次生礦物來源 157
6.2 黏土礦物化學成分變化之探討 157
6.2.1 黏土礦物之化學成分在岩層分佈的變化 157
6.2.1.1 上層玄武岩與淬冷層 157
6.2.1.2 凝灰岩與紅土裂隙中的黏土 157
6.2.1.3 紅土化中層玄武岩 157
6.2.1.4 下層玄武岩 157
6.2.2 原生礦物與次生礦物化學成分之關連 159
6.3 黏土礦物的轉變 161
6.4 禾樂石形態變化 163
第7章 結論 165
第8章 參考文獻 166
附錄 177
參考文獻 王明光、洪崑煌、林金枝、林毓雯、楊斐玉、鄭伯昆(1988)大屯及澎湖紅壤中的磁赤鐵礦(澎湖西嶼與東衛玄武岩安山質紅壤中的含鐵礦物包含有高含量的強磁鐵性礦物—磁赤鐵礦與磁鐵礦)。中國農業化學會誌,第二十六卷,第二期,第256~263頁。(英文附中文摘要)
王明光、林金枝、洪崑煌(1988)澎湖紅土中之蒙脫石。中國農業化學會誌,第二十六卷,第四期,第597-606頁。
王為敏(1997)台灣澎湖群島之近代土壤與晚中新世古土壤地球化學與風化化學之比較研究。國立台灣大學農業化學研究所博士論文,共166頁。
王為敏、葉學文、王明光、陳培源(1996)澎湖地區部分晚中新世古土壤之研究。中國農業化學會誌,第三十四卷,第417-428頁。
林泗濱(1968)澎湖產沸石之礦物學與結晶學之研究。行政院國家科學委員會補助專題研究報告,共36頁。
李宗展(1994)澎湖玄武岩中裂隙及氣孔充填礦物之特性分析,國立成功大學地球科學研究所碩士論文,共90頁。
李寄嵎(1994)澎湖地區玄武岩類與福建地區基性脈石之定年學與地球化學研究兼論中生代晚期以來中國東南地函演化。國立台灣大學地質學研究所博士論文,共226頁。
林長興(1992)澎湖群島之地質與地形。台灣省政府教育廳編印,共274頁。
張郇生(1993)澎湖產蒙脫石探微。地質,13卷,1期,第115-116頁。
張郇生(1999)麥飯石探微—兼論膨潤石外型、特徵、及用途。地質,第十九卷第一期,第68-88頁。
張郇生、陳培源(1993)台灣地區黏土礦物之研究。行政院國家科學委員會專題研究計畫成果報告,共18頁。
曹恕中、宋聖榮、李寄嵎、謝凱旋(1999)澎湖群島圖福說明書。經濟部中央地質調查所出版,共51頁。
莊文星(1988)台灣新生代晚期火山岩之定年與地球化學研究:第五章:澎湖玄武岩。國立台灣大學海洋研究所博士論文,第123-144頁。
陳汝勤、莊文星(1995)岩石學。第二版,聯經出版,台北市,共444頁。
陳培源(1973)台灣黏土礦物與黏土礦物區域。地質創刊號,第41~52頁。
陳培源(1992)澎湖群島地層劃分與地質構造上一些問題的檢討。經濟部中央地質調查所特刊,第六號,第9~38頁。
陳培源(1993)台灣黏土礦物學研究之進展與成果。經濟部中央地質調查所特刊,第七號,第101~126頁。
Chung, S.L. (1994) Late cenozoic basaltic volcanism around the Taiwan strait, SE China. Chemical Geology, 112, 1-20.
Anbeek, C., Bloom, P.R., Nater, E.A., and Zhang, H. (1994) Comment on Change in surface area and dissolution rates during hornblende dissolution at pH 4.0 by H. Zhang, P.R. Bloom, and E.A. Nater. Geochim Cosmochim Acta, 58, 4601-4613.
Aspandiar, M.F. and Eggleton, R.A. (2002) Weathering of chlorite: I. reactions and products in Microsystems controlled by the primary mineral. Clays and Clay Minerals, 50, 685–698.
Bain, D. C., Ritchie, P. F. S., Clark, D. R. and Duthie D. M. L. (1980) Geochemistry and mineralogy of weathered basalt from Morvern, Scotland. Mineralogical Magazine, 43, 865-872.
Baioumy, H.M. and Hassan, M.S. (2004) Authigenic halloysite from E1-Gideda iron ore, Bahria Oasis, Egypt: characterization and origin. Clay minerals, 39, 207-217.
Banfield, J.F. and Eggleton, R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38, 77-89.
Banfield, J.F., Jones, B.F. and Veblem, D.R. (1991) An AEM-TEM study of weathering and diagensis, Abert Lake, Oregon: Ⅰ. Weathering reactions in the volcanics. Geochim Gosmochim Acta, 55, 2781-2793.
Banfield, J.F., Veblen, D.R., and Jones, B.F. (1990) Transmission electron microscopy of subsolidus oxidation weathering of olivine. Contrib Mineral Petrol, 106, 110-123
Berner, R.A. and Schott, J. (1982) Mechanism of pyroxene and amphibole weathering; Ⅱ. Observations of soil frains. Am J Sci, 282, 1214-1231.
Berner, R.A., Sjoberg, E.L., Velbel, M.A., and Krom, M.D. (1980) Dissolution of pyroxene and amphiboles during weathering. Science, 207, 1205-1206.
Berner, R.A. (1971) Priciples of chemical sedimentation. McGraw-Hill, New York, p240.
Bird, M.I. and Chivas, A.R. (1989) Stable-isotope geochronology of the Australian regolith. Geochim cosmochim Acta, 53, 3239-3256.
Borchardt, G. (1989) Smectites. Minerals in Soil Environments (J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. America Madison, Wisconsin, 675-727.
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177-186.
Brindley, G.W. (1980) Mineralogical society monograph No.5, Mineralogical society. Mineralogical society, 41 Queen’s gate, London SW7 5HR.
Brindley, G.W. (1980) Order-disorder in clay mineral structures: in Brindley, G. W., and Brown, G., editors, Crystal structures of clay minerals and Their X-ray Identification, Monograph 5, Mineralogical Society, London, 125-195.
Casey, W.H. and Westrich, H.R., (1992) Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bounds. Nature, 355, 157-159.
Churchman, G.J., Slade, P.G., Self, P.G. and Janik, L.J. (1994). Nature of interstratified kaolin-smectites in some Austtralian soils. Aust. J. Soil Res, 32, 805-822.
Curtin, D. and Smillie, G.W. (1981) Composition and origin of smectite in soils derived from basalt in northern Ireland. Clays and Clay Minerals, 29, 277-284.
Cygan, R.T., Casey, W.H., Roslough, M.B., Westrich, H.R., Carr, M.J., and Holdren, G.R. (1989) Dissolution kinetics of experimentally shocked silicate minerals. Chemical geology, 78, 229-244.
Deer, W.A., Howie, R.A. and Zussman, J. (1992) The rockforming minerals. 2nd. ed., Longman Scientific & Technical, England, 696
Delvigne, J.E. (1998) Atlas of Micromorphology of Mineral Alteration and Weathering. Mineralogical Association of Canada. Canada, 494
Dessert, C., Dupre, B., Gaillardet, J., Francois, L.M., and Allegre, C.J. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical geology, 202, 257-273
Dixon J.B. (1989) Kaolin and serpentine group minerals. Minerals in Soil Environments (J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. America, Madison, Wisconsin.
Ece, O. I, Nakagawa, Z. E. and Schroeder, P. A. (2003) Alteration volcanic rocks and genesis of kaolin deposits in the Şile region, Northern Istanbul, Turkey. Ⅰ: Clay mineralogy. Clays and Clay Minerals, 51, 675-688.
Edward, C., Houston, J., and Smith, V. (1997) Assessment of rock quality variability due to smectitic alteration basalt using X-ray diffraction analysis. Engineering Geology, 46, 19-32
Eggleton, R.A. (1984) Formation of iddingsite rims on olivine: A transmission electron microscope study. Clays and Clay Minerals, 32, 1–11.
Eggleton, R.A., Foudoulis, C., and Varkevisser, D. (1987) Weathering of basalt: Changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35, 161-169.
Eggleton, R.A. (1991) Smectites formed by mineral weathering: proc, 7th Euroclay Conf., Dresden, M. Storr, K,-H. Henning, and P. Adolphi, eds., Ernst-Mo-ritz-Arndt Universitat, Greifswald, 313-318.
Eswaran, H. and de Coninck, F. (1975) Clay mineral formations and transformations in basaltic soils in tropical environments. Pedologie, 21, 181-210.
Farmer, V.C. (1974) Layer silicates. Infrared spectra of minerals. monograph 4, mineralogical society, London. 331-365.
Farmer, V.C. and Russel, J.D. (1964) The Infra red spectra of layer silicates. Spectrochim Acta, 20, 1149-1173.
Giese, R.F. (1988) Kaolin minerals: structures and stabilities. Hydrous phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy 19. Mineralogical society of America, Washington, D.C., 29-66.
Gislason, S.R., Arnorsson, S., and Armannsson, H. (1996) Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837-907.
Goodman, B.A., Russel, J.D., Fraser, A.D. and Woodhams, F.W.D. (1976) A mossbauer and IR spectroscopic study of the structure of nontroite. Clays and Clay Minerals, 24, 53-59.
Glasmann, J.R. and Simonson, G.H. (1985) Alteration of Basalt in Soils of western Oregon. Soil science society of America journal, 49, 262-273.
Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1994) The nontronite-saponite series: An experimental approach. Eur. J. Mineral, 6, 99-112.
Grim, R.E. (1968) Clay mineralogy. 2nd ed., McGraw-Hill, New york, 439-440.
Güven, N. (1979) Preteatment of Samples for the Mineralogical Analysis. Department of Geosciences, Texas Technological University, Unpublished note.
Hill, I.G., Worden, R.H., and Meighan, I.G. (2000) Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland. Chemical Geology. 166, 65-84.
Horvath,Z., Varga, B., and Mindszenty, A. (2000) Micromorphological and chemical complexities of a lateritic profile from basalt (Jos Plateau, Central Nigeria). Chemical Geology, 170, 81-93.
Isil, E.C.E. and Makagawa, Z.E. (2003) Alteration of volcanic rocks and genesis of kaolin deposits in the sile region, northern Istanbul, turkey, I: clay mineralogy. Clays and Clay Minerals, 51, 675-688.
Jongmans, A.G., Denaix, L., and Oort, F.V. (1998) Isotropic smectite coatings and spheroids in Holocene volcanic deposits under temperate climate, Fance. Soil. Sci. Soc. Am. J., l62, 287-295.
Klein, C. and Hurlbut, Jr. C.S. (1993) Manual of mineralogy. 21st ed, John Wiley & Sons, Canada. p681.
Knauss, K.G., Nguyen, S.N., and Weed, H.C. (1993) Dioposite dissolution kinetics as a function of pH, CO2, temperature, and time. Geochim Cosmochim Acta, 57, 285-294.
Kodama, H. (1985) Infared spectra of minerals. Tech. Bull.-Agric. Can., Res. Branch 1985-1E (Ottawa, 197pp.)
Kodama, H. and Oinuma, H. (1963) Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays and Clay Minerals, 11, 236-249.
Komadel, P. (2003) Chemically modified smectites. Clay Minerals, 38, 127-138.
Komadel P., Madejová J., Laird D.A., Xia Y., and Stucki J.W. (2000) Reduction of Fe(Ⅲ) in griffithite. Clay Minerals, 35, 625-634.
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. and Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579-599.
Kunze, G.W. and Bradley, W.F. (1964) Occurrence of a tabular halloysite in a Taxas soil. Clays and Clay Minerals, 12, 523-527.
Macdonald, G.A. and Katsura, T. (1964) Chemical composition of Hawaiin lavas. J. Petrol., 5, 82-133.
Moore, D.M. and Reynolds, R.C, Jr. (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford university Press, Oxford.
Nagasawa, K. (1978) Weathering of volcanic ash and other pyroclastic materials: in clays and clay minerals of Japan, T. Sudo and S. Shimoda, eds., Elsevier, Amsterdam, 105-145.
Nahon D.B. and Colin F. (1982) Chemical weathering of orthopyroxenes under lateric conditions. Am. J. Sci., 282, 1232-1243.
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206-210.
Nesbitt, H.W., Markovics, G., and Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta, 44, 1659-1666.
Newman, A.C.G. (1987 ) Chemistry of clays and clay minerals. Mineralogical Society, Monograph No. 6. Wiley-Interscience, New York. 480.
Oliveira, M.T.G., Formoso, M.L.L., Trescases, J.J., and Meunier, A. (1998) Clay mineral facies and lateritization in basalts of the southeastern Parana Basin, Brazil. Journal of south American earth sciences, 11, 365-377.
de Souza Santos, P., de Souza Santos, H., and Brindley, G.W. (1966) Mineralogical studies of kaolinite-halloysite clays: Ⅳ A platy mineral with structural swelling and shrinking characteristics. Am. Miner., 51, 1640-1648.
Poncelet, G.M. and Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures. Am. Miner., 52, 1161-1173.
Post, J.L. 1984. Saponite from Near Ballarat, California. Clays and Clay Minerals, 32, 147-153.
Prudencio, M.I., Braga, M.A.S., Paquet, H., Waerenborgh, J.C. Pereira, L.C.J., and Gouveia, M.A. (2002) Clay mineral assemblages in weathered basalt profiles from central and southern Portugal: climatic significance. Catena, 49, 77-89.
Romero, R., Robert, M., Elsass F., and Garcia, C. (1992) Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy. Clay Minerals, 27, 35-46.
Russell, J.D. (1987) Infared methods. In: Wilson, M.J. (Ed.), A handbook of Determinative Methods in clay mineralogy. Blackie, Glasgow, 133-173.
Salil, M.S., Shrivastava, J.P., and Pattanayak, S.K. (1997) Similarities in the mineralogical and geochemical attributes of detrital clays of masstrichtian lameta beds and weathered deccan basalt, central India. Chemical geology, 136, 25-32.
Schwarz, T. (1997) Lateritic bauxite in central Germany and implications for Miocene paleoclimate. Palaeogeography Palaeoclimatology Palaeoecology, 129, 37-50.
Serratosa, J.M., (1962) Dehydration and rehydration studies of clay minerals by infra red absorption spectra. In: Proceedings of the 9th National Clay conference. Pergamon, Oxford. 412-418.
Singer, A ., Zarei, M., Lange, F.M., and Stahr, K. (2004) Halloysite characteristics and formation in the northern Golan Heights. Geoderma, 123, 279-295.
Singh, B. and Gilkes, R.J. (1993) Weathering of spodumene to smectite in a lateritic environment. Clays and Clay Minerals, 41, 624-630.
Smith, K.L., Milnes, A.R., and Eggleton, R.A. (1987) Weathering of basalt: Formation of iddingsite. Clays and Clay Minerals, 35, 418-428.
Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401-411.
Stern, L.A., Chamberlain, C.P., and Johnson, G.D. (1996) Oxygen isotope evidence of climate change of Mountain Belts from pedogenic smectite in the Himalayan Molasse. Clay Miner Soc 33rd Annu Meet, prog and abstr. p148.
Stubican, V. and Roy, R. (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates. Am. Mineral., 46, 32-51.
Suchet, P.A., Probst, J.L., and Ludwig, W. (2003) Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17, Art. No. 1038.
Sudo, T. and Yotsumoto, M. (1977) The formation of halloysite tubes from spheritic halloysite. Clays and Clay Minerals, 51, 1640-1648.
Tazaki, K. and Fyfe, W.S. (1982) Analytical electron microscopic studies of halloysite formation processes – morphology and composition of halloysite. Proc. Int. clay conf. Bologna, Pavia, 573-584.
Tazaki, K. (2005) Microbial formation of a halloysite-like mineral. Clays and Clay Minerals, 53, 234-233.
Tomura, S., Shibasaki Y., Mizuta H., and Kitamura, M. (1985) Growth conditions and genesis of spherical and platy kaolinite. Clays and Clay minerals, 33, 200-206.
Utada, M. and Shimizu, M. (1988) Hydrothermal alteration envelope relating to Kuroko-type mineralization: a review. Mining Geol, Spec issue 12, 79-92.
Wada, S.I. and Mizota, C. (1982) Iron-rich halloysite (10Å) with crumpled lamellar morphology from Hokkaido,Japan. Clays and Clay Minerals, 30, 313-317.
Wang, W.M., Yeh, H.W., Chen P.Y. and Wang, M.K. (1998) Kaolin mineralogy of clays in paleosol profiles on the late-miocene sediments in penghu islands (pescadores), Taiwan. Clays and Clay Minerals, 46, 1-9.
Ward, C.R. and Roberts, F.I. (1990) Occurrence of spherical halloysite in bituminous coals of the Sydney Basin, Australia. Clays and Clay Minerals, 38, 501-506.
Westrich, H.R., Cygan, R.T., Casey, W.H., Zemitis, C. and Arnolld, G.W. (1993) The dissolution kinetics of mixed cation orthosilicate minerals. Am J Sci, 293, 869-893.
Whitting, L.D. and Allardice, W.R. (1986 ) X-Ray diffraction techniques. In: Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, 2nd ed., A Klute,(Eds.), Soil Science of America Book Series No. 5, 331-362.
Wilson, M.J. (1994) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman& Hall, 2-6 boundary row, London SE1 8HN,UK, 11-64.
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals. 34, 7-25
Yang, T. F., Yang, C.C., Lee C.Y., Chung, S.L., and Chen, C.H. (1996) NTUG rock standards for geochemical analysis. Journal of the Geological Society of China, 39, 307-323.
Yariv, S.H. and Mendelovici, E. (1979) The effect of degree of crystallinity on the infrared spectrum of hematite. Applied Spectroscopy, 33, 410-411.
Yu, S.C. and Jiang, W.T. (1987) Identification, structural transformation, and geological implications of saponite from the Coast Range of Taiwan. Proceedings of the Geological Society of China, 30, 83-93.
Yui T.F. and Chang S.S. (1999) Formation conditions of vesicle/fissure-filling smectites in Penghu basalts: a stable-isotope assessment. Clay Minerals, 34, 381-393.
Zhang, H., Bloom, P.R., and Nater, E.A. (1993) Change in surface area and dissolution rates during homblende dissolution at pH 4.0. Geochim Cosmochim Acta, 57, 1681-1689.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-02-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-02-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw