進階搜尋


 
系統識別號 U0026-0812200911491020
論文名稱(中文) 陽極化處理製程參數對壓鑄AZ91D 鎂合金陽極化處理及陽極膜性質之影響研究
論文名稱(英文) Effect of Process Parameters on Anodization Behavior and Properties of Anodic Film Formed onDie-cast AZ91D Magnesium Alloy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 94
學期 1
出版年 95
研究生(中文) 蕭鴻昱
研究生(英文) Houng-Yu Hsiao
電子信箱 playone@mail.mse.ncku.edu.tw
學號 n5889108
學位類別 博士
語文別 中文
論文頁數 267頁
口試委員 口試委員-鍾自強
口試委員-葛明德
口試委員-邱六合
指導教授-蔡文達
口試委員-曹紀元
口試委員-李驊登
口試委員-林招松
中文關鍵字 AZ91D鎂合金  陽極化處理  電化學交流阻抗  陽極膜性質  耐蝕性質 
英文關鍵字 electrochemical impedance spectroscopy  anodization  properties of anodic film  corrosion behavior  AZ91D Mg alloy 
學科別分類
中文摘要 摘要
本研究藉由火花放電機制於壓鑄AZ91D鎂合金上生成具保護性的陽極膜,並探討陽極化處理溶液、施加電流、電壓、基材顯微組織以及後續熱處理對陽極膜的成分、結構、保護性等性質之影響。實驗中以壓鑄AZ91D鎂合金為研究材料,3 M KOH + 0.21 M N3PO4 + 0.6 M KF水溶液為基本電解液,在基本電解液中加入硝酸鋁(Al(NO3)3)或是矽酸鈉(Na2SiO3),探討添加化合物對火花放電性質、陽極膜成分以及陽極膜保護效果之影響。並改變陽極化處理之電流密度以及終止電壓,以瞭解火花放電行為以及陽極膜保護性與施加電流密度及終止電位之關係。而經陽極化處理後之AZ91D鎂合金,再施予不同溫度之熱處理,藉以觀察後續熱處理對陽極膜組成以及性質之影響。

本研究中以光學顯微鏡(Optical microscopy, OM)、掃瞄式電子顯微鏡(Scanning electron microscopy, SEM)對鎂合金或是陽極膜之顯微結構進行觀察,利用X光光電子質譜儀(X-ray photoelectron spectroscopy)鑑定陽極膜中化學組成,而陽極膜之結晶結構則以低略角X光繞射分析儀(GAXRD)進行分析。陽極膜之保護性,則以電化學交流阻抗頻譜測試(Electrochemical impendance spectroscopy)、浸泡試驗(immersion test)、鹽霧試驗(salt spray)評估。

實驗結果顯示,添加硝酸鋁於3 M KOH + 0.21 M N3PO4 + 0.6 M KF電解液中,可以改善在該電解液中火花放電集中的情形,並增加陽極膜之均勻性。陽極膜之主要結晶性成分以氧化鎂(MgO)為主,由X光光電子質譜分析之結果可知,添加硝酸鋁有助於氧化鋁(Al2O3)、氫氧化鋁(Al(OH)3)等鋁化合物在陽極膜中形成,當添加硝酸鋁濃度為0.15 M時,陽極膜中之氧化鎂及氧化鋁含量較高,且陽極膜之厚度較厚,陽極膜之極化阻抗大幅提高。在電解液中添加矽酸鈉,陽極膜中發現含有矽酸鹽化合物(silicate)。陽極膜之顯微結構則受到矽酸鈉濃度之影響而有所變化。當添加矽酸鈉濃度為0.1 M時,具有最高之極化阻抗。

將壓鑄AZ91D鎂合金於440 ℃、氮氣氣氛中進行20小時固溶熱處理後,在水冷的條件下可得單相之鎂固溶體(α-Mg solid solution):而在空冷後,壓鑄AZ91D鎂合金表面有B相( Mg17Al12 )富集的現象。陽極膜的生長過程則受到基材顯微結構的影響,經過陽極化處理後,缺陷較少且包含較多氧化物的陽極膜會在固溶處理並空冷試片上生成,因此陽極膜之保護性較於另兩種基材上生成者佳。

壓鑄AZ91D鎂合金經陽極化處理後,將其置於空氣中進行熱處理2小時後,由於脫水(dehydration)反應的發生,陽極膜中之氫氧化物會轉變為氧化物,並使其極化阻抗提升。另外,陽極膜之極化阻抗隨著熱處理溫度增加而提昇,在150 ℃進行2小時熱處理並於空氣中冷卻,陽極膜之極化阻抗可以高達280000 Ω-cm2。但在熱處理溫度高於150 ℃時,極化阻抗則隨溫度上升而下降。另外熱處理亦使陽極膜之結晶性增加。

本研究最後利用不同耐蝕性質測試方法,包括電化學交流阻抗測試、浸泡試驗以及鹽霧試驗,對經陽極化處理之AZ91D鎂合金的耐蝕性質做一評估,並比較極化阻抗大小與鹽霧試驗、浸泡試驗所得之耐蝕性質評估結果相互間之關係。實驗結果顯示,鎂合金原材之極化阻抗很小,在鹽霧試驗以及浸泡試驗中,開始發生局部腐蝕之時間,腐蝕區域擴大之速率都較經過陽極化處理之AZ91D鎂合金快。由浸泡試驗的結果顯示,極化阻抗越大者,試片表面發生局部腐蝕(localize corrosion)的現象顯著的延緩,腐蝕區域擴大之速率也較低。而鹽霧試驗的結果中亦相同。
英文摘要 Abstract
Effects of electrolyte composition, current density/potential applied during anodizing and heat treatment on composition, structure and protection of anodic films formed on die cast AZ91D magnesium alloy by sparking were investigated in this study. The base anodizing electrolyte was 3 M KOH + 0.21 M Na3PO4 + 0.6 M KF. Effects of additive on sparking behavior and composition of protective anodic film formed was through adding Al(NO)3 and Na2SiO3 in base electrolyte. The composition of anodic films formed on AZ91D magnesium alloy after heat treatment were analyzed and their electrochemical properties were investigated.

Microstructures of Mg alloy and anodic film were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The chemical properties and crystal structures of anodic film were determined by X-ray photoelectron spectroscopy and glance angle XRD. Corrosion resistance of anodized AZ91D Mg alloy was evaluated by electrochemical impendance spectroscopy (EIS), immersion test and salt spray test.

The results showed that Al(NO3)3 made sparks become more uniform and the uniformity of anodic film was increasing as the concentration of Al(NO3)3 was increasing. The anodic film was mainly composed of MgO. The addition of Al(NO3)3 into the base electrolyte results in the formation of Al2O3 and Al(OH)3 in the anodic film. The maximum amount of Al2O3 was found in the anodic film when the alloy was anodized in the electrolyte containing 0.15 M Al(NO3)3. The results of EIS analysis and morphological examination showed that the MgO anodic film modified with Al2O3 exhibited the superior corrosiom resistance for AZ91D Mg alloy. The polarization resistance of anodic film was about 13700 Ω-cm2. The anodic film was mainly composed of MgO. The additions of Na2SiO3 into the electrolyte enhanced the formations of silicate in the anodic film. Increased corrosion resistance of the anodic film was found when AZ91D Mg alloy was anodized in 3 M KOH + 0.21 M Na3PO4 + 0.6 M KF + 0.15 M Al(NO3)3 with 0.1 M Na2SiO3 addition.

The cooling rate had a significant influence on the microstructure evolution of the AZ91D magnesium alloy after solution heat treatment at 440℃ for 20 h in N2 atmosphere. A single-phase microstructure was observed when the alloy was quenched in water after solution heat treatment. However, a duplex structure consisting of both α and high density β phases was found on the metal surface if the solution-annealed alloy was cooled in air. The polarization resistance for the alloy had highest volume ratio of β phase was relative higher than both as-cast and annealing/water quench Mg alloy. The differences in microstructure of the heat treated AZ91D magnesium alloy gave rise to a significant change in the property of the anodic film formed in 3 M KOH + 0.21 M Na3PO4 + 0.6 M KF + 0.15 M Al(NO3)3 electrolyte. The highest polarization resistance of anodic film was found for that formed on annealed and air-cooled alloy. The presence of Al-rich β phase on the surface gave rise to the formation of a more protective and uniform anodic film which consisted of a great amount of Al2O3.

The degree of crystallinity was increasing after baking and the amount of oxides were increased by dehydration reaction. The polarization resistances of anodized Mg alloys were improved significantly by increasing amount of oxide in anodic film. An optimum value of polarization resistance of anodic film was obtained after baking at 150 ℃ for 2 hr followed by air cooling. The polarization resistance was about 280 kΩ-cm2. but the polarization resistance was decreasing when the baking temperature was obove 150 ℃.

The corrosion resistances of anodized AZ91D Mg alloys were also evaluated by immersion test and salt spray test. The relation between electrochemical impedance spectroscopy and immersion, salt spray test was evolution. The results show that the polarization resistance of as-cast AZ91D Mg alloy was very low. In immersion and salt spray test, localized corrosion appeared quickly and extended fast. Anodizztion treatment enhanced corrosion resistance of AZ91D Mg alloy greatly. During immersion test, localized corrosion appeared and extended slowly as the polarization resistance of anodic film was higher. During salt spray test, the microstructure of anodic film was changed with polarization resistance of anodic film.
論文目次 摘要 I
Abstract IV
誌謝 VIII
總目錄 IX
List of Tables XIII
表目錄 XV
List of Figures XVII
圖目錄 XXX
第一章 前言 1
第二章 文獻回顧 6
2.1 鎂合金的腐蝕行為 6
2.1.1 鎂合金的腐蝕 6
2.1.2 環境對鎂合金腐蝕之影響 8
2.1.3金屬元素對鎂及其合金的影響 11
2.1.4 鎂合金之顯微結構 17
2.1.5 顯微結構對鎂合金腐蝕行為影響 21
2.2 鎂及其合金之表面耐蝕處理 29
2.2.1 電鍍與無電鍍 30
2.2.2 化成處理 32
2.2.3 氣相沈積法 33
2.2.4 雷射表面改質 33
2.2.5 有機/高分子膜 34
2.2.6 鎂合金之陽極化處理 35
2.2.6.1 陽極膜形成機制 36
2.2.6.2 陽極膜之結構 38
2.2.6.3 施加電壓電流對陽極化處理之影響 41
2.2.6.4 電解液之選擇及對陽極膜之影響 42
第三章 實驗步驟 44
3.1 實驗材料與試片準備 44
3.2 陽極化處理程序 44
3.3 表面型態以及結構成分分析 46
3.4 陽極膜耐蝕效果測試測試 48
3.4.1 浸泡試驗 48
3.4.2 鹽霧試驗 48
3.4.3 電化學交流阻抗測試 49
第四章 結果與討論 52
4.1 添加硝酸鋁對陽極化處理之影響 52
4.1.1 陽極化處理時電位與電流密度變化現象 52
4.1.2 陽極膜之巨觀及微觀組織 58
4.1.3 陽極膜結晶結構分析 64
4.1.4 陽極膜化學成份分析 66
4.1.5 陽極膜之電化學交流阻抗分析 71
4.2電位與電流密度對陽極化處理之影響 75
4.2.1施加電流密度對陽極化處理之影響 75
4.2.2終止電位對陽極化處理之影響 78
4.2.3 陽極膜結晶結構分析 86
4.2.4 陽極膜之顯微結構觀察 89
4.3 添加矽酸鈉對陽極膜組成及極化阻抗之影響 102
4.3.1 陽極膜之巨觀以及顯微結構觀察 102
4.3.2 陽極膜結晶結構分析 112
4.3.3 陽極膜之化學成分分析 115
4.3.4 陽極膜之電化學極化阻抗分析 123
4.4 基材顯微結構對陽極膜成長過程與保護性之影響 128
4.4.1 陽極膜之顯微結構分析 129
4.4.2 X光繞射分析結果 131
4.4.3 經不同陽極化時間陽極膜之顯微結構觀察 133
4.4.4 電化學交流阻抗測試 146
4.5 後熱處理對陽極膜性質之影響 153
4.5.1 經後熱處理之陽極膜顯微結構觀察--掃瞄式電子顯微鏡 154
4.5.2 經後熱處理之陽極膜結晶結構與化學成分分析 159
4.5.3 顯微結構觀察與繞射圖形分析--穿透式電子顯微鏡 163
4.5.4 經後熱處理陽極膜之電化學交流阻抗分析 170
4.6鹽霧試驗與浸泡試驗測試結果 179
4.6.1 電化學交流阻抗測試 (EIS) 180
4.6.2 浸泡試驗 (Immersion test) 182
4.6.3 鹽霧試驗 (salt spray) 192
第五章 結論 202
致謝 206
參考文獻 207
參考文獻 [1] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE, Houston, TX, USA, 1974.
[2] J. H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, “A TEM investigation of naturally formed oxide films on pure magnesium, Corrosion science, 39, 8, (1997),1397.
[3] M.M. Avedesian, H. Baker (Eds.), Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, USA (1999) p. 194.
[4] A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rareearth conversion coatings applied to magnesium”, Corrosion science, 42, (2000),275.
[5] K. Huber, “Anodic formation of coatings on magnesium. Zinc, and cadmium”, Journal of elrctrochemical society, 100, 8, (1953), 376.
[6] H. A. Evangelides, “A new finish for magnesium alloys", Metal finishing, 10,(1951), 56. U.S. Pat. 2,723,952.
[7] The Dow chemical company, G.B. Pat. 762,195, (1956).
[8] S, J, Xia, R. Yue, R. G. Rateick Jr., V. I. Birss, “Electrochemical studies of AC/DC anodized Mg alloy in NaCl solution, Journal of the electrochemical society, 151, 3, (2004), B179.
[9] V. Birss, S. Xia, R. Yue, R. G. Rateick Jr., “Characterization of oxide filmsformed on Mg-base WE43 alloy using AC/DC anodization in silicate solutions",Journal of electrochemical society, 151, 1, (2004), B1.
[10] J. E. Gray, B. Luan, “Protective coatings on magnesium and its alloys-a critical review”, Journal of alloys and compounds, 336, (2002), 88.
[11] R. Ambat, N. N. Aung, W. Zhou, “Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy”, Corrosion science, 42, (2000),1433.
[12] R. Ambat, N. N. Aung, W. Zhou, “Study on influence of chloride ion and pH onthe corrosion and electrochemical behavior of AZ91D magnesium alloy”, Journal of applied electrochemistry, 30, (2000), 865.
[13] W. M. Chan, F. T. Cheng, L. K. Leung, R. J. Horylev, T. M. Yue, “Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution”, Corrosion reviews, 16, 43, 1998.
[14] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, “Corrosion rate of magnesium and its alloys in buffered chloride solutions”, Corrosion science, 44,(2000), 603.
[15] G. Song, A. Atrens, D. StJohn, J. Nairn, Y. Li, “The electrochemical corrosion ofpure magnesium in 1 N NaCl”, Corrosion scince, 39, 5, (1997), 855.
[16] 陳欣蘋,”顯微結構對壓鑄AZ91D 鎂合金之腐蝕行為影響研究”,國立成功大學碩士論文,民國91 年。
[17] O. Lunder, J. E. Lein, T. Kr. Aune, K. Nisancioglu, “The role of Ma17Al12 phasein the corrosion of Mg alloy AZ91”, Corrosion, 45, 9, (1989), 741.
[18] G. Song, A. Atrens, X. Wu, B. Zhang, “Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride”, Corrosion science, 40, 10, (1998), 1769.
[19] R. Udhayan, D. P. Bhatt, “On the corrosion behavior of magnesium and its alloys using electrochemical techniques”, Journal of power sources, 63, (1996), 103.
[20] A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer, D. H. StJohn, ”Developmentof the as-cast microstructure in magnesium-aluminium alloys”, Journal of light metals, 1, (2001), 61.
[21] G. Song, D. StJohn, “The effect of zirconium grain refinement on the corrosionbehavior of magnesium-rare earth alloy MEZ”, Journal of light metals, 2, (2002),1.
[22] C. Sanchez, G. Nussbaum, P. Azavant, H. Octor, “Elevated temperature behavior of rapidly solidified magnesium alloys containing rare earths”, Materials science and engineering A, 221, (1996), 48.
[23] A. Yamamoto, t. Ashida, Y. Kouta, K. B. Kim, S. Fukumoto, H. Tsubakino, “Precipitation in Mg-(4-13)%Li-(4-5)%Zn ternary alloys”, Materials transactions, 44, 4, (2003), 619.
[24] Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai, Y. Zhu, “Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys”, Materials science and engineering A278, (2000), 66.
[25] Y. Guangyin, L. Manping, D. Wenjiang, A. Inoue, “Mechamical properties and microstructure of Mg-Al-An-Si-base alloy”, Materials transactions, 44, 4, (2003),458.
[26] G. Song, A. Atrens, M. Dargusch, “Influence of microstructure on the corrosion of die-cast AZ91D”, Corrosion science, 41, (1999), 249.
[27] A. K. Sharma, R. U. Rani, S. M. Mayanna, “Therma; studies on electrodeposited black oxide coating on magnesium alloys”, Thermochimica acta, 376, (2001), 67.
[28] O. Lunder, T. Kr. Aune, K. nisancioglu, “Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91”, Corrosion, 43, 5, (1987), 291.
[29] Y. Tamura, J. Yagi, T. Haitani, T. Motegi, N. Kono, H. Tamehiro, H. Saito, “Observation of manganese-bearing particles in molten AZ91 magnesium alloy by rapid solidification”, Materials transactions, 44,4, (2003), 552.
[30] N. S. McIntyre, C. Chen, “Role of impurities on Mg surface under ambient exposure conditions”, Corrosion science, 40, 10, (1998), 1697.
[31] B. L. Mordike, T. Ebert, “Magnesium properties- applications- potential”, Materials science and engineering A302, (2001), 37.
[32] S. J. Splinter, N. S. McIntyre, P. A. W. van der Heide, T. Do, “Influence of low level iron impurities on the initial interaction of water vapour with polycrystalline magnesium surfaces”, Surface science, 317, (1994), 194.
[33] ASTM B275.
[34] Y. B. Unigovski, E. M. Gutman, “Surface morphology of die-cast Mg alloy”, Applied surface science, 153, (1999), 47.
[35] K. Ishikawa, H. Watanabe, T. Mukai, “High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures”, Materials letters, 59, (2005),1511.
[36] Z. M. El-Baradie, “Structure and properties of magnesium-zinc composite alloys thermomechanically treated”, Materials letters, 57, (2003), 3269.
[37] E. Evangelista, E. Gariboldi, O. Lohne, S. Spigarelli, “High-temperature behavior of as die-cast and heat treated Mg-Al-Si AS21X magnesium alloy”, Materials science and engineering A 387-389, (2004), 41.
[38] Y. Guangyin, S. Yangshan, D. Wenjiang, “Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy”, Materials science and engineering A308, (2001), 38.
[39] T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, “Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment”, Materials science and engineering A257, (1998), 287.
[40] N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota, K. Higashi, “The aging
behavior and the mechanical properties of the Mg-Li-Al-Cu alloy”, Scripta Materialia, 36, 5, (1997), 551.
[41] C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties ofAZ91 alloy”, Materials science and engineering A325, (2002), 344.
[42] G. Song, A. L. Bowles, D. H. StJohn, “Corrosion resistance of aged die cast
magnesium alloy AZ91D”, Materials science and engineering A366, (2004), 74.
[43] M. X. Zhang, P. M. Kelly, “Crystallography of Mg17Al12 precipitates in AZ91D alloy”, Scripta materialia, 48, (2003), 647.
[44] D. Duly, J. P. Simon, Y. Brechet, “On the competition between continuous and discontinuous precipitations in binary Ma-Al alloys”, Acta metallurgica et materialia, 43, 1, (1995), 101.
[45] S. Celotto, T. J. Bastow, “Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using Al NMR spectroscopy”, Acta materialia, 49, (2001),41.
[46] D. A. Porter, K. E. Easterling, “Phase transformations in metals and alloys”, second edition, (Chapnan & Hall, London, UK, 1992) p322.
[47] N. N. Aung, W. Zhou, “Effect of heat treatment on corrosion and electrochemical behavior of AZ91D magnesium alloy”, Journal of applied electrochemistry, 32,(2002), 1397.
[48] N. Pebere, C. Riera, F. Dabosi, “Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy”, Electrochimica acta, 35, (1990), 555.
[49] S. K. Das, L. A. Davis, “ High performance aerospace alloys via rapid solidification processing”, Materials science and engineering, 98, (1988), 1.
[50] S. Mathieu, C. Rapin. J. Steinmetz, P. Steinmetz, “A corrosion study of the main constituent phases of AZ91 magnesium alloys”, Corrosion science, 45, (2003), 2741.
[51] G. L. Makar, J. Kruger, K. Sieradzki, “Repassivation of rapidly solidified magnesium-aluminum alloys”, Journal of electrochemical society, 139, 1, (1992), 47.
[52] G. L. Makar, J. Kruger, “Corrosion studies of rapidly solidified magnesium alloys”, Journal of electrochemical society, 137, 2, (1990), 414.
[53] C. D. Yim, K. S. Shin, “Semi-solid processing of magnesium alloys”, Materials transactions, 44, 4, (2003), 558.
[54] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, “Corrosion behaviorof high pressure die-cast and semi-solid cast AZ91D alloys”, Corrosion science, 44, (2002), 2737.
[55] H. Huo, Y. Li, F. Wang, “Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless niclel layer”, Corrosion science, in press.
[56] Z. Liu, W. Gao, “The effect of substrate on the electroless nickel plating of Mg and Mg alloy”, Surface and coatings technology, in press.
[57] J. Li, Z. Shao, X. Zhang, Y. Tian, “The electroless nickel-plating on magnesium alloy using NiSO4‧6 H2O as the main salt”, Surface and coating technology, in press.
[58] A. K. Sharma, M. R. Suresh, H. Bhojraj, H. Narayanamurthy, R. P. Sahu, “Electroless nickel plating on magnesium alloy”, Metal finishing, 3, (1998), 10.
[59] L. F. Spencer, Metal finishing, 68, (1970),32.
[60] L. F. Spencer, Metal finishing, 69, (1971),43.
[61] Y. Zhang, C. Yan, F. Wang, H. Lou, C. Cao, “Study on the environmentally friendly anodizing of AZ91D magnesium alloy”, surface and coatings technology, 161, (2002), 36.
[62] T. F. Barton, C. B. Johmson, “The effect of electrolyte on the anodized finish of a magnesium alloy”, Plating and surface finishing, 5, (1995), 138.
[63] A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium”, Corrosion science, 42, (2000), 275. 211
[64] L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. Maximovitch, “Phosphate on magnesium alloy AM60 pare 1: study of the formation and the growth of zinc phosphate films”, Surface and coatings technology, 185, (2004), 58.
[65] K. Mori, H. Hirahara, Y. Oishi, N. Kumagai, “Polymer plating of 2-diotylamino-1,3,5-triazine-4,6-dithiol to magnesium alloys”, Electrochemical and solid-state letters, 3, 12, (2000), 546.
[66] K. Mori, H. Hirahara, Y. Oishi, H.Sasaki, “Polymer plating of 6-substituted-1,3,5-triazine-2,4-dithiol on magnesium alloys and applications of plate alloys”, Materials transactions, 42, 7, (2001), 1219.
[67] S. Ono, K. Asami, N. Masuko, “Mechanism of chemical conversion coating film growth on magnesium ad magnesium alloy”, Materials transactions, 42, 7, (2001), 1225.
[68] L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. Maximovitch, “Phosphate on magnesium alloy AM60 pare 2: electrochemical behavior in borate buffer solution”, Surface and coatings technology, 192, (2005), 239.
[69] D. Hawke, D. L. Albright, “A phosphate-permanganate conversion coating for magnesium”, Metal finishing, 93, (1995), 34.
[70] M. A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon, T. E. Wilks, “A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites”, Corrosion science, 37, (1995), 1763.
[71] M. A. Gonzalez-Nunez, P. Skeldon, G. E. Thompson, H. Karimzadeh, “”, Corrosion, 55, (1999), 946.
[72] C. S. Lin, S. K. Fang, “Formation of cerium conversion coating on AZ31 magnesium alloys”, Journal of electrochemical society, 152, 2, (2005), B54.
[73] R. H. Unger, Thermal spray coating, in ASM handbook: corrosion, 13, (1987), 459.
[74] G. Garces, M. C. Cristina, M. Torralba, P. Adeve, “Texture of magnesium alloy films growth by physical vapour deposition (PVD)”, Journal of alloys and compounds, 309, (2000), 229.
[75] K. T. Rie, J. Whole, “Plasma-CVD of TiCN and ZrCN films n light metals”, Surface and coatings technology, 112, (1999), 226.
[76] C. Sella, J. Lecoeur, Y. Sampeur, P. Catania, “”, Surface and coatings technology, (1993), 287.
[77] S. Fukumoto, K. Sugahara, A. Yamamoto, H. Tsubakino, “Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium”, Materials transactions, 44, 4, (2003), 518.
[78] H. Tsubakino, A. Yamamoto, S. Fukumoto, A. Watanabe, K. Sugahara, H. Inoue, “High-purity magnesium coating on magnesium alloys by Vapor deposition technique for improving corrosion resistance”, Materials transactions, 44, 4,(2003), 504.
[79] U. Kutschera, R. Galun, Wear behavior of laser surface treated magnesium alloys, in: Magnesium technology 2000, The minerals, Metals and Materials society, (2000), 330.
[80] T. M. Yue, A. H. Wang, H. C. Man, “Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding”, Scripta materialia, 40, 3, (1999), 303.
[81] J. D. Majumdar, B. R. Chandra, B. L. Mordike, R. Galun, I. Manna, “Laser surface engineering of a magnesium alloy with Al+Al2O3”, Surface and coatings technology, 179, (20040, 297.
[82] H. Umehara, H. Takaya, I. Tsukuba, “Corrosion resistance of the die casting AZ91D magnesium alloys with paint finishing”, Aluminium, 75,(1999), 634.
[83] V. T. Truong, P. K. Lai, B. T. Moore, R. F. Muscat, M. S. Russo, “Corrosion protection of magnesium by electroactive polypyrrole/paint coatings”, Synthetic metals, 110, (2000), 7.
[84] O. Khaselev, J. Yahalom, “The anodic behavior of binary Mg-Al alloys in KOH-Aluminate solution”, Corrosion science, 40, 7, (1998), 1149.
[85] O. Khaselev, J. Yahalom, “Constant voltage anodizing od Mg-Al alloys in KOH-Al(OH)3 solutions”, Journal of electrochemical society, 145, 1, (1998), 190.
[86] M. Takaya, “Anodizing of magnesium alloys in KOH-Al(OH)3 solutions”, Aluminium, 65, (1989), 1244.
[87] S. J. Kim, R. Ichino, M. Okido, “Characterization of anodic films formed on Mg-Al alloys in alkaline bath”, Materials science forum, 426-432, (2003), 3427.
[88] T. B. Van, S. D. Brown, G. P. Wirtz, “Mechanism of anodic spark deposition”,American ceramic society bulletin, 56, 6, (1977), 563.
[89] G. C. Wood, C. Pearson, “Dielectric breakdown of anodic oxide films on valve metals”, Corrosion science, 7, (1967), 119.
[90] S. Ikonopisov, “Theory of electrical breakdown during formation of barrier
anodic films”, Electrochimica acta, 22, (1977), 1077.
[91] J. Yahalom, J. Zahavi, “Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti”, Electrochimica acta, 15, (1970), 1429.
[92] J. Yahalom, T. P. Hoar, “Galvanostatic anodizing of aluminium”, Electrochimica acta, 15, (1970), 877.
[93] G. Amsel, D. Samuel, “The mechanism of anodic oxidation”, Journal of physics and chemistry of solids, 23, (1962), 1707.
[94] J. Zahavi, J. Yahalom, “Temperature increase during formation of anodic films on tantalum”, Electrochimica acta, 16, (1971), 89.
[95] G. P. Wirtz, S. D. Brown, W. M. Kriven, “Ceramic coatings by anodic spark deposition”, Materials and manufacturing processes, 6, 1, (1991), 87.
[96] F. Keller, M. S. Hunter, D. L. Robinson, “Structure features of oxide coatings on aluminum”, Journal of electrochemical sociwty, 100, 9, (1953), 411.
[ 97 ] S. Ono, H. Kijima, N. Masuko, “Microstructure and voltage-current characteristics of anodic fims formed on magnesium in electrolytes containing fluoride”, Materials transactions, 44, 4, (2003), 539.
[98] S. Ono, K. Asami, T. Osaka, N. Masuko, “Structure of anodic films formed on magnesium”, Journal of electrochemical society, 143, 3, (1996), L62.
[99] S. ono, T. Osaka, K. Asami, N. Masuko, “Oxide films formed on magnesium and magnesium alloy by anodizing and conversion coating”, Corrosion review, 16, 1-2, (1998), 175.
[100] F. A. Bonilla, A. Berkani, Y. Liu, P. Skeldon, G. E. Thompson, H. Habazaki, K.Shimizu, C. John, K. Stevens, “Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte”, journal of electrochemical society, 149, 1, (2002), B4.
[101] S. Verdier, M. Boinet, S. Maximovitch, F. Dalard, “Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodizing”, Corrosion science, 47, (2005), 1429.
[102] J. Yahalom, J. Zahavi, “Experimental evalution of some electrolytic breakdown hypotheses”, Electrochimica acta, 16, (1971), 603.
[103] N. Klein, V. Moskovici, V. Kadary, “Electrical breakdown”, Journal of electrochemical society, 127, 1, (1980), 152.
[104] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, “Plasma electrolysis for surface engineering”, Surface and coatings technology, 122, (1999), 73.
[105] O. Khaselev, D. Weiss, J. Yahalom, “Structure and composition of anodic formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking”, Corrosion science, 43, (2001), 1295.
[106] M. Boinet, S. Verdier, S. Maximovitch, F. Dalard, “plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochenical properties of coatings”, Surface and coatings technology, in press.
[107] H. Fukuda, Y. Matsumoto, “Effects of Na2SiO3 on anodization of Mg-Al-Zn alloy in 3 M KOH solution”, Corrosion science, 46, (2004), 2135.
[108] H. Y. Hsiao, W. T. Tsai, “Characterization of anodic films formed on AZ91D magnesium alloy”, Surface and coatings technology, 190, (2005), 299.
[109] O. Khaselev, D. Weiss, J. Yahalom, “Anodizing of pure magnesium in KOH-Aluminate solutions under sparking”, Journal of electrochemical society, 146, 5, (1999), 1757.
[110] A. J. Zozulin, D. E. Bartak, “Anodized coatings for magnesium alloys”, Metal finishing, 3, (1994), 39.
[111] X. Zhou, G. E. Thompson, P. Skeldon, G. C. Wood, K. Shimizu, H. Habazaki, “Film formation and detachment during anodizing of Al-Mg alloys”, Corrosion science, 41, (1999), 1599.
[112] Y. Mizutani, S. J. Kim, R. Ichino, M. Okido, “Anodizing of Mg alloys in alkaline solutions”, Surface and coatings technology, 169-170, (2003), 143.
[113] Z. Shi, G. Song, A. Atrens, “Influence of the β phase on the corrosion performance of anodized coatings on magnesium-aluminium alloys”, Corrosion science, in press.
[114] L. E. Fratila-Apachitei, H. Terryn, P. Skeldon, G. E. Thompson, J. Duszczyk, L. Katgerman, “Influence of substrate microstructure on the growth of anodic oxide layers”, Electrochimica acta, 49, (2004), 1127.
[115] F. A. Bonilla, A. Berkani, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu, C. John, K. Stevens, “Enrichment of alloying elements in anodized magnesium alloys”, Corrosion science, 44, (2002), 1941.
[116] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, “Discharge characterization in plasma electrolytic oxidation of aluminium”, Journal of physics D: applied physics, 36, (2003), 2110.
[117] B. A. Boukamp, “A package for impedance/admittance data analysis”, Solid state ionics, 18&19, (1986), 136.
[118] S. Ono, K. Asami, N. Masuko, “Mechanism of chemical conversion coating film growth on magnesium and magnesium alloys”, Materials transactions, 42, 7, (2001), 1225.
[119] A. F. Crawley, B. Lagowski, “Effect of two-step aging on the precipitate structure in magnesium alloy AZ91”, Metallurgical transactions, 5, (1974), 949.
[120] A. K. Sharma, R. U. Rani, K. Giri, “Study on anodization of magnesium alloy for thermal control applications”, Metal finishing, 3, (1997), 3.
[121] A. K. Sharma, R. U. Rani, H. Bhojaraj, H. Narayanamurthy, “Galvanic black anodizing on Mg-Li alloys”, Journal of applied electrochemistry, 23, (1993), 500.
[122] A. K. Sharma, “Integral black anodizing on magnesium alloys”, Metal finishing, 6, 1993, 57.
[123] A. K. Sharma, R. U. Rani, A. Malek, K. S. N. Acharya, M. Muddu, S. Kumar, “Black anodizing of a magnesium-Lithium alloy”, Metal finishing, 4, (1996), 16.
[124] W. Paatsch, “Electrochemical impedance spectroscopy (EIS) - a powerfu in-situ technique for electrode processes”, Transactions of the institute of metal finishing, 69, 3, (1991), 90.
[125 ] D. D. Macdonald, “Review of mechanistic analysis by electrochemical impedance spectroscopy”, Electrochimica acta, 35, 10, (1990), 1509.
[126] F. Mansfeld, M. W. Kendig, “Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy”, Journal of electrochemical society, 135, 4, (1988), 828.
[127] ASTM B457-67, “Standard test for measurement of impedance of anodic coatings on aluminum”.
[128] F. Mansfeld, “Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection”, Electrochimica acta, 35, 10,(1990), 1533.
[129] F. Deflorian, S. Rossi, L. Fedrizzi, P. L. Bonora, “Testing of protective organic coatings on metals: comparison of salt spray and electrochemical impedance spectroscopy”, Journal of testing and evaluation, 31, 2, (2003), 91.
[130] F. Mansfeld, S. Kim, S. Lin, “Evaluation of corrosion protection methods for magnesium”, Journal of coatings technology, 61, 774, (1989), 33.
[131] J. R. Scully, S. T. Hensley, “Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods”, Corrosion, 50, 9, (1994), 705.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-10-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-10-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw