進階搜尋


 
系統識別號 U0026-0812200911442412
論文名稱(中文) 以浮測模型理論萃取三維空間資訊-以建物重建為例
論文名稱(英文) Theory of Floating Model in 3D Spatial Information Extraction – A Case Study on Building Reconstruction
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系碩博士班
系所名稱(英) Department of Geomatics
學年度 93
學期 2
出版年 94
研究生(中文) 王聖鐸
研究生(英文) Sendo Wang
學號 p6887101
學位類別 博士
語文別 中文
論文頁數 169頁
口試委員 指導教授-曾義星
召集委員-王蜀嘉
口試委員-陳良健
口試委員-史天元
口試委員-蔡展榮
口試委員-趙鍵哲
中文關鍵字 浮測模型  建物重建  數值攝影測量  三維空間資訊 
英文關鍵字 Floating Model  Digital Photogrammetry  Building Reconstruction  3D Spatial Information 
學科別分類
中文摘要   三維城市模型(3D City Model)或三維空間資訊系統(3D Spatial Information System)整合並提供各方面所需的三維空間資訊,可以廣泛應用在都市計畫、市政管理、不動產管理、交通規劃、機場航道規劃、無線基地台規劃、觀光導覽、國安維護等民生及專業用途。數十年來攝影測量一直被認為是最有效且精確的測繪技術,然而傳統以浮測標(Floating Mark)逐點量測的方式建置三維城市模型時,操作員需要專注於屋角點的量測及點位之連結,是三維空間資訊萃取的瓶頸。本研究採用模型式建物萃取法(Model-based Building Extraction),將傳統的浮測標擴充為浮測模型(Floating Model),使量測的單元不再是抽象的一個點位,而是許多種可伸縮、旋轉、移動的三維模型,期能以逐物件萃取的方式提升三維空間資訊之萃取效率。延伸浮測標量度的概念為浮測模型,即是將零維的浮測標拓展到三維實體,除了如同浮測標具備可調整的三維位置參數外,還依模型種類增加了各方向的伸縮尺度、空間旋轉等參數,可想像成一個漂浮在空間中,可移動、旋轉、縮放大小以量測地物的模型。將浮測模型投影至所有影像,並套合至影像上的目標地物,便有如回復攝影瞬間之幾何空間條件,此時之模型參數與影像外方位元素即為最佳解,此即以浮測模型萃取三維空間資訊之基本理論。本研究建置了點、線、面、立體四大類基本元件模型庫,量測員可以依需要選擇適當元件模型,在多張重疊像片上進行模型式的量度。並可依模型精細程度需求,以數個基本元件模型分部萃取,再透過布林運算規則組合為複合模型,因此能適用於萃取大多數的三維建物。以浮測模型為基礎,本研究提出一套半自動化萃取策略,操作員透過人機互動介面將模型一次套合至所有影像,再透過最小二乘模型-影像套合演算法自動計算最佳套合,以便在已知相片方位的條件下,利用浮測模型萃取地物的三維空間資訊,或在已知地物模型資訊的條件下利用模型求解相片的外方位元素。透過實驗案例證明,所提的浮測模型理論確可有效地應用於建物三維空間資訊之萃取,提高三維塑模之效率,並能達到傳統攝影測量之精度要求。
英文摘要  3D city model or 3D spatial information system integrates 3D spatial information and thus can be applied to versatile applications such as urban planning, real estate managing, traffic evaluating, radio station locating, tourist guiding etc. Photogrammetry has been considered as the most efficient technique for extracting 3D spatial information in the last few decades. However, the operator has to measure the 3D coordinates of all points and connect the adjacent points in sequence. This point-by-point measurement of using floating mark has become the bottleneck while reconstructing the 3D city model. In this paper, we expanded the floating mark to the floating model based on the concept of model-based building extraction. The measuring tool is no longer only an abstract point but also many kinds of 3D model, which can be scaled, rotated, or moved in the space. The floating model is defined with a datum point whose 3D coordinates indicate the spatial position of the model as the floating mark does. Furthermore, each kind of models is associated with a set of pose parameters to describe its rotation about the three orthogonal axes and shape parameters to describe its scales along predefined directions. In other words, the floating model is a flexible entity floating in the space, and can be adjusted to fit the object by these parameters. If the model parameters are good enough to represent the 3D spatial information of the object, the projection of the floating model on every overlapped image will all be coincident to the object's image. Therefore, the basic idea of the floating model theory is to fit model to the overlapped images by adjusting the model parameters. In order to meet the needs of building reconstruction, we designed several primitive models and established a model-base that is composed of four kinds of models: point, line segment, surface, and solid. By means of human-computer interface, the operator is able to choose the most suitable model and measure the object on multiple images simultaneously. For the building with complicated structure, the extraction can be implemented following the Constructive Solid Geometry(CSG) according to the required level of details. The building can be split into several parts, modeled part-by-part, and finally joined into a complex model by Boolean Set Operators. Based on the floating model theory and model-based building extraction, we proposed a semi-automated extraction strategy. A friendly human-machine interface is designed for the operator to choose and adjust the floating model to fit the images manually. Then, the computer calculate the optimal fit by an ad hoc Least-Squares Model-Image Fitting(LSMIF) algorithm. Thus the 3D spatial information can be extracted object-by-object rather than point-by-point by means of floating model, which increases the efficiency and accuracy. Tested by a series of experiments on real aerial images, the proposed floating model has shown its capability and potential for 3D spatial information extraction.
論文目次 中文摘要………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………Ⅱ
誌謝……………………………………………………………………………Ⅳ
目錄……………………………………………………………………………Ⅵ
圖目錄…………………………………………………………………………Ⅸ
表目錄………………………………………………………………………ⅩⅡ
第1章 緒論……………………………………………………………………1
 §1.1 研究背景與動機……………………………………………………1
 §1.2 相關研究……………………………………………………………4
  §1.2.1 建物模型………………………………………………………4
  §1.2.2 由上而下 v.s. 由下而上…………………………………6
  §1.2.3 全自動化 v.s. 半自動化…………………………………8
  §1.2.4 直線式攝影測量(Line Photogrammetry)………………14
  §1.2.5 CAD式攝影測量(CAD-Based Photogrammetry)…………16
 §1.3 研究議題與方法……………………………………………………18
 §1.4 論文架構……………………………………………………………20
第2章 浮測模型理論…………………………………………………………22
 §2.1 模型類別與描述……………………………………………………22
  §2.1.1 零維實體模型…………………………………………………23
  §2.1.2 一維實體模型…………………………………………………24
  §2.1.3 二維實體模型…………………………………………………25
  §2.1.4 三維實體模型…………………………………………………26
 §2.2 模型的浮動與變形…………………………………………………28
  §2.2.1 形狀參數………………………………………………………29
  §2.2.2 姿態參數………………………………………………………31
  §2.2.3 三維座標系統轉換……………………………………………32
  §2.2.4 浮測模型的角點座標…………………………………………36
 §2.3 模型與影像關係……………………………………………………46
  §2.3.1 浮測標理論……………………………………………………46
  §2.3.2 模型成像與影像方位之關係…………………………………48
  §2.3.3 參數調整機制…………………………………………………51
 §2.4 立體模型的觀測……………………………………………………53
  §2.4.1 半模型…………………………………………………………53
  §2.4.2 立體觀測的合適性……………………………………………55
  §2.4.3 單張與多影像觀測……………………………………………56
 §2.5 可行之模型式觀測模式……………………………………………58
  §2.5.1 全手動調整……………………………………………………59
  §2.5.2 半自動化觀測模式……………………………………………60
 §2.6 模型—影像最佳套合觀念之引用…………………………………60
  §2.6.1 最佳套合的依據………………………………………………61
  §2.6.2 最佳套合演算法………………………………………………62
第3章 模型—影像最佳套合…………………………………………………64
 §3.1 邊緣線偵測…………………………………………………………64
 §3.2 搜尋環域……………………………………………………………69
 §3.3 最小二乘套合………………………………………………………71
 §3.4 觀測點位的權值……………………………………………………75
  §3.4.1 以梯度大小為權………………………………………………75
  §3.4.2 以梯度方向篩選………………………………………………78
 §3.5 強制附合與人工修正………………………………………………80
  §3.5.1 加入已知參數…………………………………………………81
  §3.5.2 強制附合到點…………………………………………………83
第4章 模型式建物重建………………………………………………………85
 §4.1 建物塑模……………………………………………………………85
  §4.1.1 多面體模型……………………………………………………85
  §4.1.2 稜柱體模型……………………………………………………86
  §4.1.3 參數式多面體模型……………………………………………86
  §4.1.4 建構實體幾何…………………………………………………87
 §4.2 影像—模型互動關係………………………………………………89
  §4.2.1 調整影像方位…………………………………………………89
  §4.2.2 調整模型參數…………………………………………………90
 §4.3 半自動萃取策略……………………………………………………91
  §4.3.1 初始投影………………………………………………………93
  §4.3.2 人機互動式套合………………………………………………95
 §4.4 模型組合約制條件…………………………………………………101
  §4.4.1 元件間之約制條件……………………………………………101
  §4.4.2 建物間之約制條件……………………………………………104
第5章 程式設計與實驗測試…………………………………………………107
 §5.1 程式設計……………………………………………………………107
 §5.2 實驗影像說明………………………………………………………110
 §5.3 手動量測測試………………………………………………………111
  §5.3.1 各類浮測模型的萃取實例……………………………………111
   §5.3.1.1 以直線段模型萃取圍牆…………………………………112
   §5.3.1.2 以矩形面模型萃取游泳池………………………………115
   §5.3.1.3 以橫三角柱模型萃取倉庫屋頂…………………………118
  §5.3.2 以不同模型觀測同一棟建物…………………………………122
   §5.3.2.1 以直線段模型觀測建物…………………………………123
   §5.3.2.2 以屋脊型房屋模型觀測建物……………………………130
 §5.4 LSMIF套合測試………………………………………………………133
  §5.4.1 矩形體模型套合測試…………………………………………134
  §5.4.2 環域測試………………………………………………………137
  §5.4.3 收斂範圍測試…………………………………………………139
  §5.4.4 十棟建物範例…………………………………………………141
  §5.4.5 套合精度………………………………………………………144
  §5.4.6 多張影像套合…………………………………………………145
 §5.5 求定影像外方位測試………………………………………………147
  §5.5.1 僅以一棟建物作為控制………………………………………148
  §5.5.2 以三棟建物作為控制…………………………………………150
  §5.5.3 以五棟建物作為控制…………………………………………151
第6章 結論與建議……………………………………………………………152
 §6.1 浮測模型的優缺點…………………………………………………152
 §6.2 實驗中所獲得的經驗………………………………………………154
 §6.3 後續研究建議………………………………………………………157
參考文獻………………………………………………………………………159
自述……………………………………………………………………………169
參考文獻 Abdel-salam, M.A., Gorte, B. and Korstens, M.J., 2001. Top Down 
 approach for Object Parameter Estimation, The 3rd International
 Symposium in Mobile Mapping Technology, Cairo, Egypt, Softcopy.
Ameri, B., 2000a. Automatic Recognition and 3D Reconstruction of
 Buildings through Computer Vision and Digital Photogrammetry. 
 Doctor Thesis, University of Stuttgart, Stuttgart, Germany, 110
 pages.
Ameri, B., 2000b. Feature Based Model Verification (FBMV): A New
 Concept for Hypothesis Validation in Building Reconstruction,
 The XIXth Congress of The International Society for Photogrammetry
 and Remote Sensing, Amsterdam, Netherlands, pp. 24-35.
Baillard, C. and Zisserman, A., 2000. A Plane-sweep Strategy for
 the 3d Reconstruction of Buildings from Multiple Images,
 International Archives of Photogrammetry and Remote Sensing, XXXIII,
 part B2, pp.56-62.
Bignone, F., Henricsson, O., Fua, P. and Strickler, M., 1996.
 Automatic Extraction of Generic House Roofs from High Resolution
 Aerial Imagery, The 4th European Conference on Computer Vision,
 Cambridge, UK, pp. 85-96.
Böhm, J., Brenner, C., Gühring, J. and Fritsch, D., 2000. Automated
 Extraction of Features from CAD Models for 3D Object Recognition,
 The XIXth Congress of The International Society for Photogrammetry
 and Remote Sensing. Amsterdam, Netherlands, pp. 76-83.
Braun, C., Kolbe, T., Lang, F., Schickler, W., Steinhage., V.,
 Cremers, A., Förstner, W. and Plümer L., 1995. Models for
 Photogrammetric Building Reconstruction, Computers & Graphics, 19(1):
 109-118.
Brenner, C., 1999. Interactive Modelling Tools for 3D Building
 Reconstruction, In: D. Fritsch and R. Spiller (Editors),
 Photogrammetric Week '99. Wichmann, Stuttgart, Germany, pp. 23-34.
Brenner, C., 2000. Towards Fully Automatic Generation of City
 Models, The XIXth Congress of The International Society for
 Photogrammetry and Remote Sensing. Amsterdam, Netherlands, pp.85-92.
Brenner, C., 2001. City Models - Automation in Research and
 Practice. In: D. Fritsch and R. Spiller (Editors), Photogrammetric
 Week '01, Stuttgart, Germany, pp. 149-158.
Brenner, C. and Haala, N., 1999. Towards Virtual Maps: On the
 Production of 3D City Models. GeoInformatics, 2(5): 10-13.
Brenner, C., Haala, N. and Fritsch, D., 2001. Towards Fully
 Automated 3D City Model Generation. In: E.P. Baltsavias, A. Grün
 and L. Van Gool (Editors), The 3rd International Workshop on
 Automatic Extraction of Man-Made Objects from Aerial and Space
 Images, Balkema Publishers, Softcopy.
Buchanan, T., 1992. Critical Sets for 3D Reconstruction Using Lines.
 In: G. Sanini (Editor), Computers Vision - ECCV, Berlin, Germany,
 pp. 730-738.
Byne, J.H.M. and Anderson, J.A.D.W., 1998. A CAD-based Computer
 Vision System. Image and Vision Computing, 16(8): 533-539.
Camps, O., Flynn, P.J. and Stockman, G.C., 1998. Recent Progress in
 CAD-based Computer Vision: An Introduction to the Special Issue.
 Computer Vision and Image Understanding, 69(3): 251-252.
Canny, J., 1986. A Computational Approach to Edge Detection. IEEE
 Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):
 679-698.
Chapman, D.P., Deacon, A.T.D., Hamid, A.A. and Kotowski, R., 1992.
 CAD Modelling of Radioactive Plant - The Role of Digital
 Photogrammetry in Hazardous Nuclear Environments, International
 Archives of Photogrammetry and Remote Sensing, XXIX, Part B5,
 pp.741-753.
Chio, S.-H., 2001. A Practical Strategy for Roof Patch Extraction
 from Urban Stereo Aerial Images. Doctoral Dissertation, National
 Cheng Kung University, Tainan, Taiwan, 97 pages.
Chio, S.-H. and Wang, S.-C., 1999. Semi-automatic System for Roof
 Reconstruction Based on 3-D Linear Segments, The 20th Asian
 Conference on Remote Sensing, Hong Kong, pp. 165-170.
Das, S., Bhanu, B. and Ho, C.-C., 1994. Generic Object Recognition
 Using CAD-Based Multiple Representations, IEEE CAD-Based Vision
 Workshop, pp. 202-209.
El-Hakim, S., 2000. A Practical Approach to Creating Precise and
 Detailed 3D Models from Single and Multiple Views, The XIXth
 Congress of The International Society for Photogrammetry and Remote
 Sensing, Amsterdam, Netherlands, pp. 202-209.
EOS, 2005. PhotoModeler. EOS Systems Inc, Vancouver, Canada.
Ermes, P., 2000. Constraints in CAD Models for Reverse Engineering
 Using Photogrammetry, The XIXth Congress of The International
 Society for Photogrammetry and Remote Sensing, Amsterdam,
 Netherlands, pp. 215-221.
Ermes, P. and Van den Heuvel, F.A., 1998. Measurement of Piping
 Installations with Digital Photogrammetry, ISPRS Commission V
 Symposium on "Real-time Imaging and Dynamic Analysis", Hakodate,
 Japan, pp. 217-220.
Ermes, P., van den Heuvel, F.A. and Vosselman, G., 1999. A
 Photogrammetric Measurement Method Using CSG Models, IAPRS, ISPRS
 Workshop "Measurements Project Modeling and Documentation in
 architecture and Industry", pp. 36-42.
Fischer, A., Kolbe, T.H. and Lang, F., 1999. On The Use of
 Geometric and Semantic Models for Component-based Building
 Reconstruction. In: W. Förstner, C.-E. Liedtke and J. Bückner
 (Editors), Smati '99 Workshop, Bonn, pp. 101-119.
Förstner, W., 1994. A Framework for Low Level Feature Extraction.
 In: J.O. Eklundh (Editor), Computer Vision. Springer-Verlag,
 Berlin, pp. 383-394.
Förstner, W., 1999. 3D-City Models: Automatic and Semiautomatic
 Acquisition Methods. In: D. Fritsch and R. Spiller (Editors),
 Photogrammetric Week '99. Wichmann, Stuttgart, pp. 291-304.
Förstner, W. and Gülch, E., 1999. Automatic Orientation and
 Recognition in Highly Structured Scenes. ISPRS Journal of
 Photogrammetry and Remote Sensing, 54: 23-34.
Forkert, G., 1996. Image Orientation Exclusively Based on Free-form
 Tie Curves, The XVIIIth Congress of The International Society for
 Photogrammetry and Remote Sensing, Vienna, Austria, pp. 196-201.
Fritsch, D., 1999. Virtual Cities and Landscape Models - What Has
 Photogrammetry to Offer? In: D. Fritsch and R. Spiller (Editors),
 Photogrammetric Week '99. Wichmann Verlag, Stuttgart, Germany,
 pp.3-14.
Fryer, J.G. and Goodin, D.J., 1989. In-Flight Aerial Camera
 Calibration from Photography of Linear Features. Photogrammetric
 Engineering & Remote Sensing, 55(12): 1751-1754.
Fua, P., and Leclerc, Y., 1990. Model driven Edge Detection,
 Machine Vision and Application, 3(1): 45-56.
Fuchs, C. and Förstner, W., 1995. Polymorphic Grouping for Image
 Segmentation, The 5th ICCV'95. IEEE Computer Society Press, Boston,
 pp.175-182.
Grün, A., 1997. Automation in Building Reconstruction, Photogrammetric
 Week '97. Herbert Wichmann Verlag, Stuttgart, pp. 175-188.
Grün, A., 2000. Semi-automated Approaches to Site Recording and
 Modeling, The XIXth Congress of The International Society for
 Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
 pp.309-318.
Grün, A., 2001. Cities from the Sky - Photogrammetric Modeling of
 CyberCity is Coming of Age. GeoInformatics, 4(10): 30-33.
Grün, A. and Dan, H., 1997. TOBAGO - A Topology Building for the
 Automated Generation of Building Models. In: A. Grün, E.P.
 Baltsavias and O. Henricsson (Editors), Automatic Extraction of
 Man-Made Objects from Aerial and Space Images, Monte Verita,
 pp.149-160.
Grün, A., Steidler, F. and Wang, X., 2002. Generation and
 Visualization of 3D-city and Facility Models Using CyberCity
 Modeler, Map Asia, Softcopy(CD-ROM).
Grün, A. and Wang, X., 1999. CyberCity Modeler, A Tool for
 Interactive 3-D City Model Generation. In: D. Fritsch and R. Spiller
 (Editors), Photogrammetric Week '99. Wichmann Verlag, Stuttgart,
 pp.317-327.
Gülch, E., 1996. Extraction of 3D Objects from Aerial Photographs.
 Grant 50 TT 9536, BMBF/DARA GmbH, Bonn.
Gülch, E., 1997. Application of Semi-Automatic Building Acquisition.
 In: A. Grün, E.P. Baltsavias and O. Henricsson (Editors),
 Automatic Extraction of Man-Made Objects from Aerial and Space
 Images. Birkhauser Verlag, Monte Verita, pp. 129-138.
Gülch, E., 2000. Virtual Cities from Digital Imagery. Photogrammetric
 Record, 16(96): 893-903.
Gülch, E., Müller, H., Läbe, T. and Ragia, L., 1998. On The
 Performance of Semi-automatic Building Extraction, ISPRS
 Commission III Symposium on Object Recognition and Scene
 Classification from Multispectral and Multisensor Pixels, Columbus,
 Ohio, USA, Softcopy.
Haala, N., 1995. 3D Building Reconstruction Using Linear Edge
 Segments. In: D. Fritsch and D. Hobbie (Editors), Photogrammetric
 Week '95. Herbert Wichmann Verlag, Heidelberg, Germany, pp. 19-28.
Haala, N., Böhm, J. and Kada, M., 2002. Processing of 3D Building
 Models for Location Aware Applications, ISPRS Commission III
 Symposium, Graz, Austria, pp. 138-143.
Haala, N. and Brenner, C., 1997. Interpretation of Urban Surface
 Models Using 2D Building Information. In: A. Grün, E.P. Baltsavias
 and O. Henricsson (Editors), Automatic Extraction of Man-Made
 Objects from Aerial and Space Images. Birkhauser Verlag, Monte
 Verita, pp. 213-222.
Haala, N. and Brenner, C., 1999. Virtual City Models from Laser
 Altimeter and 2D Map Data. Photogrammetric Engineering & Remote
 Sensing, 65(7): 787-795.
Haala, N., Brenner, C. and Anders, K.-H., 1998a. 3D Urban GIS
 from Laser Altimeter and 2D Map Data. In: T. Schenk and A.F.
 Habib (Editors), ISPRS Commission III Symposium on Object
 Recognition and Scene Classification from Multispectral and
 Multisensor Pixels, Columbus, Ohio, USA, pp. 339-346.
Haala, N., Brenner, C. and Staetter, C., 1998b. An Integrated System
 for Urban Model Generation, ISPRS Congress Commission II Symposium,
 Cambridge, UK, pp. 96-103.
Haala, N. and Hahn, M., 1995. Data Fusion for the Detection and
 Reconstruction of Buildings. In: A. Grün, O. Kübler and P. Agouris
 (Editors), Automatic Extraction of Man-Made Objects from Aerial and
 Space Images. Birkhäuser Verlag, Berlin, pp. 211-220.
Haralick, R.M. and Cho, Y.H., 1984. Solving Camera Parameters from
 the Perspective Projection of a Parameterized Curve. Pattern
 Recognition, 17(6): 637-645.
Hendrickx, M., Vandekerckhove, J., Frere, D., Moons, T. and van Gool,
 L., 1997. 3D Reconstruction of House Roofs from Multiple Aerial
 Images of Urban Areas, International Archives of Photogrammetry and
 Remote Sensing. ISPRS, Columbus, Ohio, USA, pp. 88-94.
Henricsson, O., 1996. Analysis of Image Structures using Color
 Attributes and Similarity Relations, Swiss Federal Institute of
 Technology (ETH), Zurich, 124 pages.
Henricsson, O., Bignone, F., Willuhn, W., Ade, F., Kübler, O.,
 Baltsavias, E., Mason, S. and Grün, A., 1996. Project Amobe:
 Strategies, Current Status, and Future Work, The XVIIIth Congress
 of The International Society for Photogrammetry and Remote Sensing,
 Vienna, Austria, pp. 321-330.
Heuel, S. and Förstner, W., 2001. Matching, Reconstructing and
 Grouping 3D Lines from Multiple Views Using Uncertain Projective
 Geometry, IEEE Computer Society Conference on Computer Vision and
 Pattern Recognition, Hawaii, USA, pp. 1-8.
Holland, J. H., 1973. Genetic Algorithms and the Optimal
 Allocations of Trials. SIAM Journal of Computing, 2(2): 88-105.
Hrabacek, J. and van den Heuvel, F.A., 2000. Weighted Geometric
 Objects Constraints Integrated in a Line-Photogrammetric Bundle
 Adjustment, The XIXth Congress of The International Society for
 Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
 pp.380-387.
Hsiao, H.-W. and Wong, K.W., 1999. Automatic Matching of
 Buildings and Corners. Photogrammetric Engineering & Remote
 Sensing, 65(7): 803-810.
Jaw, J.J., 1998. Simultaneous Determination of Exterior
 Orientation and Terrain Surface from Aerial Imagery and
 Airborne Laser Scanning, International Archives of
 Photogrammetry and Remote Sensing, XXXII, Columbus, Ohio,
 USA, pp.52-57.
Kada, M., 2002. Automatic Generalisation of 3D Building Models,
 Proceedings of the Joint International Symposium on Geospatial
 Theory, Processing and Applications, Ottawa, Canada, Softcopy.
Läbe, T. and Gülch, E., 1998. Robust Techniques for Estimating
 Parameters of 3D Building Primitives, ISPRS Commission II
 Symposium, Cambridge, UK, pp.169-176.
Lang, F. and Förstner, W., 1996. 3D-City Modeling with a Digital
 One-eye Stereo System, International Archives of Photogrammetry and
 Remote Sensing, Vienna, Austria, pp. 415-420.
Lang, F., Löcherbach, T. and Schickler, W., 1995. A One-eye Stereo
 System for Semi-automatic 3D-building Extraction. Geomatics Info
 Magazine: 1-4.
Lee, S.H. and Leou, J.J., 1994. A Dynamic Programming Approach
 to Line Segment Matching in Stereo Vision. Pattern Recognition,
 27(8): 961-986.
Li, D. and Zhou, G., 1994. CAD-based Line Photogrammetry for
 Automatic Measurement and Reconstruction of Industrial Objects,
 ISPRS Commission V Symposium on Close Range Techniques and
 Machine. RICS Books, Melbourne, Australia, pp. 231-240.
Liu, Y. and Huang, T.S., 1991. Determining Straight
 Line Correspondences from Intensity Images. Pattern Recognition,
 24(6): 489-504.
Lowe, D.G., 1991. Fitting Parameterized Three-Dimensional Models to
 Images. IEEE Transactions on Pattern Analysis and Machine
 Intelligence, 13(5): 441-450.
Maas, H.-G., 1999. Fast Determination of Parametric House Models from
 Dense Airborne Laserscanner Data, ISPRS Workshop on Mobile Mapping
 Technology, Bangkok, Thailand, pp. 1-6.
McIntosh, J.H. and Mutch, K.M., 1988. Matching Straight Lines.
 Computer Graphics and Image Processing(43): 386-408.
Medioni, G. and Nevatia, R., 1984. Matching Images Using Linear
 Features. IEEE Transactions on Pattern Analysis and Machine
 Intelligence, 6(6): 675-685.
Mohan, R. and Nevatia, R., 1989. Using Perceptual Organization to
 Extract 3-D Structures. IEEE Transactions on Pattern Analysis and
 Machine Intelligence, 11(11): 1121-1139.
Mulawa, D.C. and Mikhail, E.M., 1988. Photogrammetric Treatment of
 Linear Features, International Archives of Photogrammetry and Remote
 Sensing, Washington DC, USA, pp. 383-393.
Niederöst, M., 2000. Detection and Reconstruction of Buildings for A
 3-D Landscape Model of Switzerland, UM3/2000 Workshop, Tokyo, Japan,
 Softcopy.
Noronha, S. and Nevatia, R., 1997. Detection and Description of
 Buildings from Multiple Aerial Images., IEEE Conference on Computer
 Vision and Pattern Recognition, Puerto Rico, pp. 588-594.
Park, H.J. and Zimmermann, P., 2000. Colour Image Matching for DTM
 Generation And House Extraction, International Archives of Photogrammetry
 and Remote Sensing, Amsterdam, Netherlands, XXXIII, pp.697-704.
Petsa, E. and Patias, P., 1994a. Formulation and assessment of
 straight line-based algorithms for digital photogrammetry.
 International Archives of Photogrammetry and Remote Sensing,
 30(5): 310-317.
Petsa, E. and Patias, P., 1994b. Sensor Attitude Determination Using
 Linear Features. International Archives of Photogrammetry and Remote
 Sensing, 30(1): 62-70.
Rau, J.-Y., 2002. Geometrical Building Modeling and Its Application to
 the Ortho-rectification for Aerial Images. Doctoral Dissertation,
 National Central University, Chungli, Taiwan, 104 pages.
Rau, J.-Y. and Chen, L.-C., 2001. Semi-Automatic Approach for
 Building Reconstruction Using SPLIT-MERGE-SHAPE Method, Proceedings
 of the 22nd Asian Conference on Remote Sensing. Singapore,
 pp.249-255.
Rottensteiner, F., 2000. Semi-Automatic Building Reconstruction
 Integrated in Strict Bundle Block Adjustment, International
 Archives of Photogrammetry and Remote Sensing Amsterdam,
 Netherlands, XXXIII, pp.461-468.
Schindler, K. and Bauer, J., 2003. A Model-Based Method For Building
 Reconstruction, ICCV Workshop on Higher-Level Knowledge in 3D
 Modeling and Motion, Nice, France, Softcopy(CD-ROM).
Schwermann, R., 1994. Automatic image orientation and object
 reconstruction using straight lines in close- range photogrammetry.
 International Archives of Photogrammetry and Remote Sensing, 30(5):
 349-356.
Sequeira, V., Ng, K., Wolfart, E., Goncalves, J.G.M. and Hogg, D.,
 1999. Automated Reconstruction of 3D Models from Real Enviroments.
 ISPRS Journal of Photogrammetry and Remote Sensing(54): 1-22.
Sester, M. and Förstner, W., 1989. Object Location Based on Uncertain
 Models, Mustererkennung 1989, Informatik Fachberichte 219,
 Springer-Verlag, pp. 457-464.
ShapeQuest, 2005. ShapeCapture. ShapeQuest Inc., USA.
Shufelt, J.A., 1999. Performance Evaluation and Analysis of Monocular
 Building Extraction From Aerial Imagery. IEEE Transactions on
 Geoscience and Remote Sensing, 21(4): 311-326.
Smith, M.J. and Park, D.W.G., 2000. Absolute and Exterior Orientation
 Using Linear Features, The XIXth Congress of The International
 Society for Photogrammetry and Remote Sensing, Amsterdam,
 Netherlands, pp.850-857.
Suveg, I. and Vosselman, G., 2000a. 3D Reconstruction of
 Building Models, The XIXth Congress of The International
 Society for Photogrammetry and Remote Sensing, Amsterdam,
 Netherlands, pp. 538-545.
Suveg, I. and Vosselman, G., 2000b. Localization of Building
 Corners in Aerial Images, The 6th Conference of ASCI, Lommel,
 Belgium, pp.294-301.
Tangelder, J.W.H., Ermes, P., Vosselman, G. and van den Heuvel,
 F.A., 1999. Fitting Parameterised Object Models to Gradient
 Images, The 5th Annual Conference of ASCI, Heijden,
 Netherlands, pp. 449-456.
Tao, C.V., 2000. Semi-Automated Object Measurement Using Multiple-Image
 Matching from Mobile Mapping Image Sequences. Photogrammetric
 Engineering & Remote Sensing, 66(12): 1477-1485.
Tseng, Y.-H., Lin, C.-C. and Wang, S., 2002. Model-image Fitting
 Using Genetic Algorithms for Building Extraction from Aerial
 Images, The 23rd Asian Conference on Remote Sensing, Kathmandu,
 Nepal, Softcopy(CD-ROM).
Tseng, Y.-H. and Wang, S., 2000. CAD-Based Photogrammetry for 3D City
 Model Reconstruction, The Congress of The Chinese Geographic
 Information System Society, Tainan, Taiwan, R.O.C., pp. 40-48.
Tseng, Y.-H. and Wang, S., 2001. Semi-automatic Building Extraction
 by Matching CSG Primitives with Aerial Images, The Asia GIS
 2001, Tokyo, Japan, Softcopy(CD-ROM).
Tseng, Y.-H. and Wang, S., 2002. Model-based 3D Reconstruction of
 Buildings from Multiple Aerial Images. Geographic Information
 Sciences, 8(1): 16-23.
Tseng, Y.-H. and Wang, S., 2003. Semiautomated Building Extraction
 Based on CSG Model-Image Fitting. Photogrammetric Engineering &
 Remote Sensing, 69(2): 171-180.
van den Heuvel, F.A., 1997a. Efficient 3D-Modeling of Buildings
 Using a Priori Geometric Object Information. In: S.F. El-Hakim
 (Editor), SPIE, pp.38-49.
van den Heuvel, F.A., 1997b. Exterior Orientation Using Coplanar
 Parallel Lines, The 10th Scandinavian Conference on Image
 Analysis, Lappeenranta, Finland, pp. 71-78.
van den Heuvel, F.A., 1998. 3D Reconstruction from a Single
 Image Using Geometric Constraints. ISPRS Journal of Photogrammetry
 and Remote Sensing, 53(6): 354-368.
van den Heuvel, F.A., 1999a. Estimation of Interior Orientation
 Parameters from Constraints on Line Measurements in a Single
 Image, IAPRS, ISPRS Workshop "Measurements Project Modeling and
 Documentation in Architecture and Industry", pp. 81-88.
van den Heuvel, F.A., 1999b. A Line-Photogrammetric Mathematical
 Model for the Reconstruction of Polyhedral Objects. In: S.F.
 El-Hakim (Editor), SPIE, pp.60-71.
van den Heuvel, F.A., 2000. Trends in CAD-based Photogrammetric
 Measurement, The XIXth Congress of The International Society for
 Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
 pp.852-863.
Veldhuis, H., 1998. Performance Analysis of Two Fitting Algorithms for
 the Measurement of Parameterised Objects, International Archives of
 Photogrammetry and Remote Sensing, Columbus, Ohio, USA, pp. 400-406.
Veldhuis, H. and Vosselman, G., 1998. The 3D Reconstruction of
 Straight and Curved Pipes Using Digital Line Photogrammetry.
 ISPRS Journal of Photogrammetry and Remote Sensing, 53(1): 6-16.
Vosselman, G. and Haralick, R.M., 1996. Performance Analysis of
 Line and Circle Fitting in Digital Images, The Workshop on
 Performance Characteristics of Vision Algorithms, Cambridge, UK,
 pp.1-24.
Vosselman, G., 1998. Interactive Alignment of Parameterised Object
 Models to Images, International Archives of Photogrammetry and
 Remote Sensing, Columbus, Ohio, USA, pp. 272-278.
Vosselman, G., 1999. 3D Measurements in Images Using CAD Models,
 The 5th Annual Conference of ASCI, Heijden, Netherlands,
 pp.449-456.
Vosselman, G. and Veldhuis, H., 1999. Mapping by Dragging and
 Fitting of Wire-Frame Models. Photogrammetric Engineering &
 Remote Sensing, 65(7): 769-776.
Vosselman, G. and Tangelder, J.W.H., 2000. 3D Reconstruction of
 Industrial Installations by Constrained Fitting of CAD Models
 to Images, Mustererkennung 2000. Informatik Aktuell. Springer
 Verlag, pp. 285-292.
Wang, S. and Tseng, Y.-H., 2001. On the Accuracy Assessment of
 Least-Squares Model-image Fitting for Building Extraction from Aerial
 Images, The 22nd  Asian Conference on Remote Sensing, Singapore,
 pp.1085-1090.
Wang, S. and Tseng, Y.-H., 2002. Image Orientation by Fitting Line
 Segments to Edge Pixels, The 23rd Asian Conference on Remote
 Sensing, Kathmandu, Nepal, Softcopy(CD-ROM).
Wang, S. and Tseng, Y.-H., 2004a. Least-squares Model-image
 Fitting for Building Extraction from Aerial Images. Asian Journal
 of Geoinformatics, 4(4): 3-12.
Wang, S. and Tseng, Y.-H., 2004b. Semi-automated CSG Model-based
 Building Extraction from Photogrammetric Images, International
 Archives of Photogrammetry and Remote Sensing, Istanbul, Turkey,
 Softcopy(DVD-ROM).
Weinhaus, F.M. and Devarajan, V., 1997. Texture Mapping 3D Models of
 Real-world Scenes. ACM Computing Surveys, 29(4): 325-365.
Zalmanson, G.H., 2000. Hierarchical Recovery of Exterior
 Orientation from Parametric and Natural 3-D Curves, The XIXth
 Congress of the International Society for Photogrammetry and
 Remote Sensing, Amsterdam, Netherlands, pp. 610-617.
Zhang, Z. and Faugeras, O.D. (Editors), 1992. Finding Clusters
 and Planes from 3D Line Segments with Application to 3D Motion
 Determination. Lecture Notes in Computer Science, pp. 227-236.
Zhou, G. and Li, D., 2001. CAD-Based Object Reconstruction Using Line
 Photogrammetry for Direct Interaction between GEMS and a
 Vision System. Photogrammetric Engineering & Remote Sensing,
 67(1): 107-116.
Zielinski, H., 1992. Line photogrammetry with multiple image.
 International Archives of Photogrammetry and Remote Sensing,
 29(3): 669-676.
Zimmermann, P., 2000. A New Framework for Automatic Building
 Detection Analysing Multiple Cue Data, International Archives of
 Photogrammetry and Remote Sensing, Amsterdam, Netherlands, XXXIII,
 pp.1063-1070.
王正忠, 2002. 以近景攝影測量進行模型式建物重建. 碩士論文, 國立成功大學,
 台南市, 93頁.
周宏達, 2001. 以最小二乘法進行參數式模型與影像之最佳套合. 碩士論文, 國
 立成功大學, 台南市, 172頁.
周宏達, 曾義星及王聖鐸, 2001. 最小二乘CSG模型與影像套合. 航測及遙測學
 刊, 6(3): 57-73.
林文棋, 2001. 半自動化建物萃取之建物模型建置與操作. 碩士論文, 國立成功
 大學, 台南市, 114頁.
林文棋, 曾義星及王聖鐸, 2001. 半自動化建物萃取之建物模型建置與操作. 航
 測及遙測學刊, 6(3): 35-55.
林志交, 2002. 基因演算法於模型影像套合計算之應用. 碩士論文, 國立成功大
 學, 台南市, 107頁.
黃文利, 2001. 近景攝影測量應用於三維建物模型側面影像敷貼之研究. 碩士論
 文, 國立成功大學, 台南市, 97頁.
傅秉綱, 2002. 三維建物模型表面影像敷貼自動化之研究. 碩士論文, 國立成功
 大學, 台南市, 83頁.
傅秉綱, 曾義星及王聖鐸, 2002. 三維建物模型表面敷貼自動化之研究, 第二十
 一屆測量學術及應用研討會論文集, 新竹, pp. 75-82.
曾義星及王聖鐸, 2000. 結合CAD與攝影測量之三維城市模型建置, 2000年中華地
 理資訊學會學術研討會, 台南, pp. 40-48.
劉彥秀, 2003. 最小二乘模型與影像套合之後續探討. 碩士論文, 國立成功大學,
 台南市,146頁.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-09-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-09-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw