進階搜尋


 
系統識別號 U0026-0812200911430039
論文名稱(中文) 安山岩中禾樂石生長特徵與原生礦物熱液蝕變次序之關係
論文名稱(英文) Growth charactertistics of halloysites in relation to hydrothermal alteration of primary minerals in andesites
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 93
學期 2
出版年 94
研究生(中文) 景馨月
研究生(英文) Hshin-Yueh Ching
學號 l4692402
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-江威德
口試委員-楊懷仁
口試委員-蕭炎宏
中文關鍵字 大屯火山  穿透式電子顯微鏡  傅立葉轉換紅外線光譜  熱液蝕變  禾樂石  安山岩 
英文關鍵字 FTIR  TEM  Tatun volcanics  Hydrothermal alteration  Andesite  Halloysite 
學科別分類
中文摘要   本研究以X光粉末繞射(XRD)、掃瞄式及穿透式電子顯微鏡(SEM及TEM)和傅立葉轉換紅外線(FTIR)光譜等方法分析大屯火山群百拉卡山附近曾受熱液蝕變之兩輝角閃安山岩,以探討蝕變產物禾樂石的晶體形態、化學成份及結構特性與原生火成礦物熱液蝕變序列之關係。
  
  百拉卡山蝕變安山岩具有白色及黃色兩種脈狀禾樂石。XRD結果顯示佔主體的白色脈狀禾樂石以10 Å禾樂石為主,部份脫水成7 Å禾樂石;黃色脈狀禾樂石脫水程度較高,且峰形較低矮寬廣而輪廓定義差,顯示其結晶度差,粒徑小而缺陷密度高。X光能量分散光譜及XRF分析顯示白色禾樂石不含或含少量鐵,黃色禾樂石則普遍具有較高之鐵含量。FTIR光譜分析指示兩者皆不含高嶺石,O-H鍵拉張、H-O-H扭曲和Al-OH吸收峰的分布範圍顯示白色禾樂石的層間水主要在結構之矽氧四面體環中,黃色禾樂石的層間水則有顯著比例位於結構的表層,此與其低結晶度、較易釋去層間水的特性相符。TEM分析顯示黃色脈和白色脈皆具三種不同形態的禾樂石:(1)管狀禾樂石(少鐵或無鐵),粒徑約0.2~0.5 µm;(2)球狀禾樂石(中含鐵量),粒徑約0.2~0.05 µm;(3)小球狀禾樂石(含鐵量高),直徑≦0.05 µm。其中黃色脈以小球狀禾樂石為多(~60%),管狀次之(~38%),而白色脈則以管狀禾樂石為主(~95%)。
  
  蝕變安山岩之SEM分析顯示初期僅有斜長石晶粒之高鈣核心部份和部份基質物質受到蝕變,而角閃石、輝石、氧化鈦鐵礦物等皆未蝕變,蝕變產物只有不含鐵的禾樂石;熱液蝕變較深之安山岩中可見鐵鎂礦物蝕變成含鐵較高的禾樂石,氧化鈦鐵礦物並局部轉變成高鋁鐵之矽酸鹽礦物,部份斜長石已完全轉變成不含鐵之禾樂石。這些現象反映禾樂石的各種生成特徵可受控於原生礦物受熱液蝕變之先後次序,此與母岩種類和熱液物理化學條件有密切的關係。百拉卡山熱液蝕變之兩輝角閃安山岩中之不含鐵的白色脈狀禾樂石的應是源自長石和部份基質物質,而含鐵黃色脈狀禾樂石的生成代表鐵鎂礦物已受到熱液蝕變之階段。
英文摘要  X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectrometry were used to characterize structural, morphological, and chemical features of hydrothermal halloysite in relation to the alteration sequence of primary minerals in a two-pyroxene hornblende andesite body in Tatun Volcanics Group, northern Taiwan. The selected samples were collected from Bailaka Range, northwest of the main peak of Tatun Volcanics Group.
  
 The hydrothermally altered andesite contains white and yellow veinlets of halloysite. Both are mainly composed of 10 Å halloysite that are partially dehydrated to form 7 Å halloysite, with the yellow one showing a higher degree of dehydration. These materials exhibit the following characteristics: (1) broader and ill-defined XRD peaks of yellow halloysite implying poorer crystallinity, smaller crystallite size, and higher defect density relative to white halloysite; (2) relatively weak and obtuse ~910 cm-1 (Al-OH stretching) and broad 3460-3556 cm-1 (O-H stretching) FTIR absorption peaks suggesting a relatively high proportion of interlayer water molecules locating at the inner surface of the layer structure of yellow halloysite in contrast to those situated at the centers of the ditrigonal rings of SiO4 tetrahedra of the layer structure of white halloysite; (3) a relatively high iron content in yellow halloysite but little or no iron content in white halloysite as indicated by XRF and X-ray energy dispersive spectrometric analyses. Both white and yellow halloysites display three different types of morphology: (1) tubular particle (little or no iron content), with a circular cross section of 0.2–0.5 µm in diameter; (2) spherical particle (medium iron content) having a diameter of 0.05–0.2 µm; (3) globular particle (high iron content) with a diameter of ≦0.05 µm, as shown by TEM data. The yellow halloysite is composed mostly of globular halloysite (~60 %) and tubular halloysite (~38 %), whereas the white halloysite has a characteristic tubular shape (~ 95 %).
  
 A trace or no iron content is characteristic of the halloysite that occurs in association with partially altered Ca-rich plagioclase cores and matrix feldspars in the least altered rocks. There is no evidence for alteration of hornblende, pyroxenes, and opaque Fe-Ti oxides in the least altered rocks. The reaction of primary minerals follows the sequence of plagioclase → hornblende → Fe-Ti oxides → pyroxenes as the degree of alteration increases. Relatively iron-rich halloysite commonly occurs in the vicinity of Fe-bearing primary minerals and is present only in advanced stages of alteration when Fe-bearing minerals are affected by hydrothermal fluids.
  
 The aforementioned data collectively imply that the formation of relatively iron-poor, high crystallinity, and coarse-grained tubular halloysite is followed by the occurrence of iron-rich, poor crystallinity, and fine-grained globular halloysite in later stages of alteration. The growth characteristics of halloysite appear to be directly related to its iron content which is in turn controlled by the sequence of alteration of primary minerals when the rock/water ratio is high and the fluid composition is dominated by the parent rock, as is the case studied here.
論文目次 == 總目錄 ==
第1章 前言 1
第2章 地質背景 5
2-1 大屯火山活動之時代及地體構造 5
2-2 大屯火山群之分佈 5
2-3 大屯火山群之後火山作用 6
2-4 大屯火山熱液換質現象 6
2-5 岩石風化換質與腐土化現象 7
2-6 大屯火山熱液來源 8
第3章 研究方法 10
3-1 採樣與標本描述 10
3-2 實驗流程 10
3-3 X光粉末繞射分析 15
3-3.1 一般亂向粉末繞射分析 16
3-3.2 一般順向試片繞射分析 16
3-3.3 乙二醇飽和順向試片繞射分析 19
3-4 偏光顯微鏡分析 19
3-5 掃瞄式電子顯微鏡分析 19
3-5.1 X光能量分散光譜儀礦物化學分析 20
3-6 傅立業轉換紅外線光譜分析 23
3-6.1 脈狀物FTIR分析 23
3-6.2 黏土分離粉末FTIR分析 23
3-6.3 FTIR光譜判讀 23
3-7 X光螢光光譜分析 24
3-8 穿透式電子顯微鏡分析 25
第4章 結果 26
4-1 X光粉末繞射分析 27
4-1.1 亂向試片XRD分析 27
4-1.2 順向試片XRD分析 30
4-1.3 乙二醇試片XRD分析 31
4-2 X光螢光光譜元素分析 37
4-3 偏光顯微鏡分析 40
4-3.1 階段Ⅰ— 相對新鮮之安山岩OM分析 40
4-3.2 階段Ⅱ— 初期蝕變之安山岩OM分析 42
4-3.3 階段Ⅲ— 蝕變深化之安山岩OM分析 44
4-3.4 階段Ⅳ— 深度蝕變之安山岩OM分析 46
4-4 掃瞄式電子顯微鏡分析 48
4-4.1 階段Ⅰ— 相對新鮮安山岩SEM分析 48
4-4.2 階段Ⅱ— 初期蝕變之安山岩SEM分析 51
4-4.3 階段Ⅲ— 蝕變深化之安山岩SEM分析 55
4-4.4 階段Ⅳ— 深度蝕變之安山岩SEM分析 58
4-5 傅立葉轉換紅外線光譜分析 63
4-5.1 脈狀物之FTIR分析 63
4-5.2 不同蝕變程度的安山岩FTIR分析 64
4-6 TEM分析 70
第5章 討論與結論 77
5-1 安山岩原生礦物熱液蝕變次序與特徵 77
5-2 原生礦物與蝕變產物所反映之熱液性質 80
5-3 熱液PH值對高嶺石質礦物生成形態與結晶度之影響 81
5-4 熱液溫度對高嶺石質礦物生成形態與結晶度之影響 83
5-5 原生礦物蝕變次序影響禾樂石形態之主要因素 84
5-6 綜合討論及結論 85
第6章 參考文獻 87

== 表目錄 ==
表一、大屯火山地區熱液蝕變及風化地區的蝕變產物。 8
表二、標本描述。 14
表三、轉速與粒徑分離對照表。 17
表四、禾樂石定量分析所採用之各元素濃度標準試樣表。 20
表五、含鐵禾樂石定量分析所採用之各元素濃度標準試樣表。 21
表六、中性長石定量分析所採用之各元素濃度標準試樣表。 21
表七、奧長石定量分析所採用之各元素濃度標準試樣表。 21
表八、斜輝石定量分析所採用之各元素濃度標準試樣表。 22
表九、直輝石定量分析所採用之各元素濃度標準試樣表。 22
表十、普通角閃石定量分析所採用之各元素濃度標準試樣表。 22
表十一、四個階段之蝕變程度。 26
表十二、大屯火山群百拉卡山岩樣中5.0-2.0、2.0-0.5及<0.5 μm分離粉末經不同處理後之10 Å含水禾樂石~8.8° 繞射峰半高寬。 32
表十三、白色、淡黃色和黃色脈狀物之XRF分析結果。 38
表十四、不同熱液蝕變程度的安山岩之XRF分析結果。 38
表十五、白色、淡黃色和黃色脈狀物全岩之化學式計算結果。 39
表十六、大屯火山群百拉卡山熱液蝕變兩輝石角閃安山岩中白色及黃色脈狀禾樂石之無標準化AEM分析結果(重量百分比)。 71
表十七、原生礦物受溶蝕之pH值範圍。 81

== 圖目錄 ==
圖一、高嶺石礦物(kaolin minerals)之基本結構。 3
圖二、高嶺石礦物之矽氧四面體環結構)。 3
圖三、禾樂石層間含水結構。 4
圖五、大屯火山群地質簡圖及百拉卡山採樣地點標示圖。 11
圖六、大屯火山群百拉卡山西北山麓主要由兩輝石角閃安山岩所組成。 12
圖七、大屯火山群百拉卡山西南山麓主要由兩輝石角閃安山岩所組成。 13
圖八、本研究的實驗流程。 15
圖九、X光粉末繞射前處理之流程。 15
圖十、大屯火山群百拉卡山岩樣之X光粉末繞射圖。 29
圖十一、大屯火山群百拉卡山岩樣中5.0-2.0μm分離粉末之繞射圖。 33
圖十二、大屯火山群百拉卡山岩樣中2.0-0.5μm分離粉末之繞射圖。 34
圖十三、大屯火山群百拉卡山岩樣中<0.5μm分離粉末之繞射圖。 35
圖十四、大屯火山群百拉卡山熱液蝕變階段ⅡDT03092904 B岩樣中5.0-2.0、2.0-0.5和<0.5μm分離粉末之繞射圖。 36
圖十五、大屯火山群百拉卡山熱液蝕變之兩輝石角閃安山岩及其脈狀物全岩之X光螢光分析結果。 39
圖十六、大屯火山群百拉卡山相對新鮮兩輝石角閃安山岩(DT03092906)之偏光顯微鏡影像。 41
圖十七、大屯火山群百拉卡山初期熱液蝕變兩輝石角閃安山岩(DT03092904A、B)之偏光顯微鏡影像。 43
圖十八、大屯火山群百拉卡山熱液蝕變深化之兩輝石角閃安山岩(DT03092914)的偏光顯微鏡影像。 45
圖十九、大屯火山群百拉卡山深度熱液蝕變兩輝石角閃安山岩(DT03092809)之偏光顯微鏡影像。 47
圖二十、相對新鮮之安山岩(DT03092906)的掃瞄式電子顯微鏡背向散射電子影像。 50
圖二十一、初期蝕變之安山岩(DT03092904 A、B)的掃瞄式電子顯微鏡背向散射電子影像。 53
圖二十二、蝕變深化之安山岩(DT03092914)的掃瞄式電子顯微鏡背向散射電子影像。 56
圖二十三、深度蝕變之安山岩(DT03092809)的掃瞄式電子顯微鏡背向散射電子影像。 60
圖二十四、大屯火山群百拉卡山熱液蝕變之兩輝石角閃安山岩及其脈狀物EDS分析結果之Al-Si-(Ca+Na+K)莫耳百分比三角圖。 62
圖二十五、大屯火山群百拉卡山熱液蝕變之兩輝石角閃安山岩及其脈狀物全岩EDS分析結果之Al-Si-(Fe+Mg)-Si莫耳百分比三角圖。 62
圖二十四、大屯火山群百拉卡山熱液蝕變兩輝石角閃安山岩脈狀禾樂石之紅外線吸收光譜。 64
圖二十五、大屯火山群百拉卡山安山岩樣中5.0-2.0μm分離粉末之紅外線吸收光譜。 67
圖二十六、大屯火山群百拉卡山安山岩樣中2.0-0.5μm分離粉末之紅外線吸收光譜。 68
圖二十七、大屯火山群百拉卡山安山岩樣中<0.5μm分離粉末之紅外線吸收光譜。 69
圖二十八、大屯火山群百拉卡山熱液蝕變兩輝石角閃安山岩中白色脈狀禾樂石之穿透式電子顯微鏡影像。 72
圖二十九、大屯火山群百拉卡山熱液蝕變兩輝石角閃安山岩中黃色脈狀禾樂石之穿透式電子顯微鏡影像。 74
圖三十、大屯火山群百拉卡山中禾樂石生長特徵與原生礦物熱液蝕變次序之關係。 79
參考文獻 王文祥、陳正宏(1989)台灣北部大屯火山群之火山地質及核分裂飛跡定年研究。國立台灣大學地質學研究所碩士論文。
王明光(2000)土壤環境礦物學,藝軒圖書出版社,台北市,第199~231頁。
宋聖榮、曹恕中、羅煥記(2000)大屯火山群的噴發特徵:隱含沈陷火山口的形成及火山演化。中國地質學會會刊,第43卷,第2期,第361~378頁。
林清江(1985)大屯火山群地質簡介。科學教育資料叢書(Ⅹ):大屯火山群及北部濱海地質簡介。台灣省政府教育廳。
曹恕中(1994)大屯火山群火山岩的鉀氬年代分析。經濟部中央地質調查所彙刊,第九號,第137~154頁。
莊文星、陳汝勤(1989)臺灣新生代晚期火山岩之定年與地球化學研究。國立臺灣大學地質科學研究所博士論文。
郭麗莉(1991)經濟部中央地質調查所八十年度研究發展專題—台灣地區黏土礦物產狀及類型研究之檢視。經濟部中央地質調查所。第14~15頁。
陳中華(1982)安山岩的熱水蝕變及其在地熱探勘上之應用。國立成功大學礦冶及材料科學研究所碩士論文。
陳文山、楊志成、楊小青(2003a)火山奇緣:大屯火山,地質,第22卷, 第1期,第15~30頁。
陳文山、楊志成、楊小青、劉進金(2003b)從火山地形探討大屯火山群的地層層序與構造。經濟部中央地質調查所彙刊。第十六期。第99~123頁。
陳正宏(1990)台灣之火成岩。經濟部中央地質調查所。第6~14頁及第111~113頁。
陳培源(1973) 台灣黏土礦物與黏土礦物區域。地質創刊號。第41-52頁。
陳培源(1993)台灣黏土礦物學研究之進展與成果。經濟部中央地質調查所特刊,第七號,第101-126頁。
陳肇夏(2000)礦物岩石調查研究。八十六年度中央地質調查所年報。經濟部中央地質調查所。第45~46頁。
陳肇夏、吳永助(1971)地質。黃克剛(編著)。大屯火山群地熱探勘工作報告之三,報告111號,第1~21頁。
陳耀麟(2002)大屯火山區溫泉水之化學成分及其對河水之影響。國立臺灣大學地質科學研究所博士論文。
黃克剛(1969)溫泉試樣之採取及分析。黃克剛(編著)。大屯火山群地熱探勘工作報告之一。報告90號,第5~10頁。
黃克剛(1970)地質。黃克剛(編著)。大屯火山群地熱探勘工作報告之二。報告102號,第1~13頁。
趙杏媛、張有瑜(1990)黏土礦物與黏土礦物分析。北京海洋出版社,第57~72頁。
劉康克、陳中華、謝越寧、江新春(1984)台北市大屯山地熱區碳氫氧同位素之研究。中央研究院地球科學研究所,研究報告ASIES-CR8401,共39頁。
鄭文哲、陳肇夏(1973)馬槽探勘區地下地質構造及地熱流體產狀與化學特性。黃克剛(編著)。大屯火山群地熱探勘工作報告之四。報告126號,第60~75頁。
魏正岳(1995)大屯火山溫泉地區之土壤地球化學。國立台灣大學地質學研究所碩士論文。
羅煥記(2002)大屯火山區溫泉水之化學成分及其對河水之影響。國立臺灣大學地質科學研究所博士論文。
Adamo, P., Violante, P. and Wilson, M. J.(2001)Tubular ans spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina volcano (Southern Italy). Geoderma, 99, 195-316.
Angelica, M. P. and Santamarina, J. C.(2005)Fabric map for kaolinite: effects of pH and ionic concentration on behavior. Clays and Clay Minerals, 53, 211-223.
Aoyagi, K. and Kazama, T. (1980)Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology, 27, 179-188.
Banfield, J. F. and Eggleton, R. A.(1990)Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38, 77-89.
Bobos, I., Duplay, J., Rocha, J. and Gomes, C.(2001)Kaolinite to Halloysite-7Å transformation in the Kaolin deposit of Sao Vicente De Pereira, Portugal. Clays and Clay Minerals, 49, 596-607.
Browne,(1977)http://www.netlibrary.com/nlreader/nlreader.dll?bookid=42157&filename=Page_137.html
Chen, C. H. and Yang, H. Y.(1984)Mineral paragenesis in the hydrothermal alteration of andesites, as exemplified by a geothermal well in the Tatun Volcanic area, Northern Taiwan. Proc. Geol. Soc. China, 27, 68-85.
Chen, C. H.(1978)Significance of ultrabasic inclusions in Tatun volcano group, northern Taiwan. Proc. Geol. Soc. China, 21, 80-91.
Chen, P. Y.(1969)Occurrence and genesis of Kaolin minerals from Taiwan. Part Ι. Kaolinite, Halloyiste, and Allophane. Proc. Geol. Soc. China, 12, 30-48.
Chen, P. Y.(1972)Clay minerals from the alterations of mfic and intermediate igneous rocks in Taiwan and neighboring islands. Proc. Geol. Soc. China, 15, 45-64.
Costanzo, P. M. and Giese, R. F.(1985)Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite (10 Å). Clays and Clay Minerals, 33, 415-423.
Daniel, B. N.(1991)Introduction to major geochemicak processes of weathering. In: Introduction to the petrology of soils and chemical weathering, Daniel, B. N. (Eds.). John wiley & Sons, lnc. 1-39.
Dixon, J. B. and Mckee, T. R.(1973)Internal and external morphology of tubular and spheroidal halloysite particles. Clays and Clay Minerals, 22, 127-137.
Ece, O. I., Nakagawa, Z. E. and Schroeder, P. A.(2003)Alteration volcanic rocks and genesis of kaolin deposits in the Şile region, Northern Istanbul, Turkey. I: Clay mineralogy. Clays and Clay Minerals, 51, 675-688.
Farmer, V. C.(1974)The layer silicates. In: Infrared spectra of minerals. Farmer, V. C. (Eds.). Mineralogical Society. 331-363.
Fialips, C. I. and Decarreau, A.(2000)Hydrothermal formation of kaolinite from various metakaolins. Clay Minerals, 35, 559-572.
Fialips, C. I., Petit, S., Decarreau, A. and Beaufort, D.(2000) Influence of synthesis pH on kaolinite “Crystallinity” and surface properties. Clays and Clay Minerals, 48, 173-184.
Fieldes, M.(1955)Clay mineralogy of New Zealand soils. Part Ⅱ: Allophane and related mineral colloids. 37, 336-350.
Fiore, S., Huertas, F. J., Huertas, F. and Linares, J.(1995)Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, 43, 353-360.
Güven, N .(1979)Preteatment of Samples for the Mineralogical Analysis. Department of Geosciences, Texas Technological University, unpublished note.
Harvey and Murray,(1993)The geology, mineralogy and exploitation of halloysite clays of northland, New Zealand.In: Kaolin gensis ans utilization. Murray, H., Bundy, W. and Harvey, C.(Eds.). The Clay Minerals Society. No. 1. 233-248.
Harvey, C. C.(1997)Exploration and assessment of kaolin clays formed from acid volcanic rocks on the Coromandel Peninsula, North Island, New Zealand. Applied Clay Science, 11, 381-392.
Hillier, S. and Ryan, P. C.(2002)Identification of halloysite(7 Å)by ethylene glycol salvation: the ‘MacEwan effect’. Clays and Clay Minerals, 37, 487-496.
Huertas, F. J., Fiore, S., Huertas, F. and Linares, J.(1999)Experimental study of the hydrothermal formation of kaoinite. Chemical Geology, 156, 171-190.
Inoue, A.(1995)Formation of clay minerals in hydrothermal environments. In: Origin and mineralogy of clays. Bruce, V.(Eds.).Clays and the Environment.268-298.
Jeong, G. Y.(1998)Formation of vermicular kaolinite from halloysite aggregates in the weathering of plagioclase. Clays and Clay Minerals, 46, 276-279.
Jeong, G. Y.(2000)The dependence of localized crystallization of halloysite and kaolinite on primary minerals in the weathering profile of granite. Clays and Clay Minerals, 48, 196-203.
Jongmans, A. G., van Oort, F., Denaix, L., Jaunet, A. M.(1999)Mineral micro- and nano-variability revealed by combined micromorphology and in situ submicroscopy. Catena, 35, 259-279.
Kautz, C. Q. and Ryan, P. C.(2003)The 10 Å to 7 Å halloysite transition in a tropical soil sequence Costa Rica. Clays and Clay Minerals, 51, 252-263.
Kawano, M. and Tomita, K.(1995)Experimental study on the formation of clay minerals from obsidian by interaction with acid solution at 150°and 200 ℃. Clays and Clay Minerals, 43, 212-222.
Kawano, M. and Tomita, K.(2001)TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan. American Mineralogist, 86, 284-292.
Kimbara, K, (1977)Some cristobalites and tridymites in geothermal area. Journal of Japan Geothermal Energy Association, 14, 13-20.
Levis, S. R. and Deasy, P. B.(2002)Characterisation of halloysite for use as a microtubular during delivery system. International Journal of Pharmaceutics. 243. 125-134.
Mestdagh, M. M., Vielvoye, L. and Herbillon, A. J.(1980)Iron in kaolinite: Ⅱ. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 1-13.
Miyawaki, R., Tomura, S., Inuki, K., Shibasaki, Y., Okazaki, M., Samejima, S. and Satokawa, S.(1992)Formation process of kaolinite from the amorphous mixture of silica and alumina. Clay science, 8, 273-284.
Nagasawa, K.(1978)Kaolin minerals. In: Clays and clay minerals of Japan. Sudo, T. and Shimoda, S.(Eds.).Elsevier scientific publishing company. 189-219.
Papoulis, D., Panayota, T. K. and Katagas, C.(2004)Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52, 275-286.
Patrier, P., Beaufort, D., Mas, A., Traineau, H.(2003)Surfical clay assemblage associated with the hydrothermal activity of Bouillante (Guadeloupe, French West Indies).Journal of Volcanology and Geothermal Research, 126, 143-156.
Robertson, I. D. M. and Eggleton, R. A.(1991)Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derives kaolinite to halloysite. Clays and Clay Minerals, 39, 113-126.
Russell, J. D. and Fraser, A. R. (1994)Infrared methods. In: spectroscopic and chemical determinative method. Wilson, M. J.(Eds.). Clay Mineralogy. 18-21.
Russell, J. D.(1987)Infrared methods. In: A handbook of determinative methods in clay mineralogy. Wilson, M. J.(Eds.).Glasgow and London.133-173.
Satokawa, S., Miyawaki, R. and Osaki Yasushi(1996)Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite. Clays and Clay Minerals, 44, 417-423.
Singer, A., Zarei, M., Lange, F. M. and Stahr, K.(2004)Halloysite characteristic and formation in the northern Golan Heights. Geoderma. Article in press.
Singh, B. and Gilkes, R. J.(1992)An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212-229.
Singh, B.(1996)Why does halloysite roll ?—A new model. Clays and Clay Minerals, 44, 191-196.
Sudo, T.(1978)An outline of clays and clay minerals in Japan. In: Clays and clay minerals of Japan. Sudo, T. and Shimoda, S.(Eds.).Elsevier scientific publishing company. 1-33.
Tanner, C. B. and Jackson, M. L.(1947)Nomographs of Sedimentation Times for Soil Particles Under Gravity or Centrifugal Acceleration.
Tazaki, K.(1982)Analytical electron microscopic studies of halloysite formation processes. In: morphology and composition of halloysite. Van Olphen, H., Veniale, F. (Eds.). Proc. Int. Clay Conf., Italy, 1981. 573-584.
Tazaki, K.,(1982)Analytical electron microscopic studies of halloysite formation processes. In: morphology and composition of halloysite. Van Olphen, H., Veniale, F. (Eds.). Proc. Int. Clay Conf. 573-584.
Tomura, S., Shibasaki, Y., Miroyuki, M. and Kitamura, M(1983)Spherical kaolinite: synthsis and mineralogical properties. Clays and Clay Minerals, 31, 413-421.
Tomura, S., Shibasaki, Y., Miroyuki, M. and Kitamura, M(1985)Growth conditions and genesis of spherical and platy kaokinite. Clays and Clay Minerals, 33, 200-206.
Wada, S. and Mizota, C.(1982)Iron-rich halloysite(10Å)with crumpled lamellar morphology from Hokkaido, Jopan. Clays and Clay Minerals, 30, 315-317.
Whitting, L. D. and Allardice, W. R.(1986)X-Ray diffraction techniques. In: Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, 2nd edition, A Klute,(Eds.), Soil Science Society of America Book Series No. 5, 331-362.
Wilson, I. R.(2004)Kaolin and halloysite deposites of China. Clay Minerals, 39, 1-15.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw