進階搜尋


 
系統識別號 U0026-0812200911425122
論文名稱(中文) 台灣澎湖群島岩石圈地函之熔融與交代換質作用
論文名稱(英文) Melting and Metasomatism beneath Penghu Archipelago, Taiwan: Constraints from Xenolith Compositions
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 93
學期 2
出版年 94
研究生(中文) 賴逸真
研究生(英文) Yi-Jen Lai
學號 l4692406
學位類別 碩士
語文別 中文
論文頁數 117頁
口試委員 口試委員-蔡金郎
指導教授-楊懷仁
口試委員-蕭炎宏
口試委員-何恭算
中文關鍵字 Nd模式年齡  交代換質作用  部分熔融  增生地殼  澎湖  超基性擄獲岩 
英文關鍵字 Nd model age  metasomatism  partial melting  SCLM  xenolith  Penghu 
學科別分類
中文摘要   華南地區發育大量新生代玄武岩及源自地函之超基性擄獲岩為此區岩石圈地殼與地函之演化提供最佳制約,澎湖為華南陸塊的外圍部份,雖然過去對澎湖地區之超基性擄獲岩有岩象學、礦物化學(主要元素分析資料)與全岩化學等的相關研究,但是對於微量元素含量及同位素組成的變化尚無深入之剖析。本研究希望以橄欖岩及所含之斜輝石為窗口,進一步了解澎湖地區岩石圈大陸地函(Subcontinental Lithospheric Mantle; SCLM)的物質組成、熔融過程、交代換質作用以及增生地殼之厚度。研究結果顯示:主要元素方面,元素相互之間的關係和部分熔融後的殘餘物質演化的趨勢一致;微量元素方面,模擬全岩在尖晶石穩定範圍熔融之殘留物其重稀土元素(Heavy Rare Earth Elements; HREE)含量符合所分析擄獲岩全岩HREE之配分模式,說明澎湖奎壁地區的擄獲岩是在尖晶石穩定範圍(10-26 kbar)經13-18 %漸次分異熔融(incremental melting)後殘留之固體;模擬斜輝石在尖晶石穩定範圍下的熔融程度亦得到和全岩一致的結果。由計算出的熔融程度(F)配合熔融區間可以估算出澎湖地區產生玄武岩質地殼之厚度約為5-12公里,這是第一次對澎湖地區地函熔融所產生之地殼厚度之估算。此外,輕稀土元素(Light Rare Earth Elements; LREE)富集的情形及U型之稀土元素(REE配分模式)顯示澎湖地區擄獲岩遭受交代換質作用。由擄獲岩中斜輝石Ti/Zr-La/Sm、(La/Yb)N-Ti/Eu以及La/Ce-Sr/Nd分佈圖,推論除了標本PL070701B主要是受到明顯碳酸鹽質岩漿影響外,其他標本主要受到矽質岩漿之影響,因此,本研究認為此區至少遭受兩期不同介質之交代換質作用。由斜輝石REE配分模式所得之重要推論是:標本PL070701B中的斜輝石主要為受到碳酸鹽質交代換質作用後所形成之斜輝石,並非地函熔融後的殘餘之斜輝石,造成PL070701B的LREE極度富集,而HREE含量低於一般由地函熔融演化殘餘之斜輝石。由受交代換質作用影響最小之標本PL070707B的Nd模式年齡推論此區岩石圈地函形成的年齡為1.25Ga,與Wang et al.(2003)所訂出之Os模式年齡一致,屬於元古代(Proterozoic)之岩石圈地函。
英文摘要  Miocene intraplate basalts forming the Penghu Islands in western Taiwan are surface manifestation of Cenozoic extension in South China Sea. These basalts contain mantle-derived lherzolitic xenoliths, which provide important constraints for mantle melting and metasomatism processes. Melting model calculations indicate that the abundances of heavy rare earth elements in clinopyroxene and bulk xenoliths can be explained as residues after 13~18% melting from the depleted mantle, and the incremental melting model provides the best fits to the data. Based on the equation of Forsyth (1993) developed for MORB generation, we calculate that the minimum crustal thickness produced from melting of subcontinental lithospheric mantle beneath the Penghu is about 5-12 km. The LREE enrichment and the U-shaped patterns in clinopyroxenes suggest that these clinopyroxenes were subjected to melt/fluid metasomatism. We use Ti/Zr-La/Sm, (La/Yb)N-Ti/Eu, and La/Ce-Sr/Nd relationships to propose that the SCLM beneath the Penghu Archipelago was metasomatized by both carbonaititc and silicate melts. At least two episodes of metasomatism cause by different metasomatic agents can be identified in the analyzed xenoliths. However, the contribution from each metasomatic agent cannot be constrained. The clinopyroxenes in sample PL070701B were formed by decarbonation reaction which might occur during carbonatitic metasomatism resulting in their distinctive REE pattern. The Nd model age of the least masomatized sample suggests segregation from the chondritic source 1.25 Ga ago, consistent with the inference from the Os model ages. Kueipi samples, which show stronger metasomatic signals, define a linear correlation in the 147Sm/144Nd versus 143Nd/144Nd plot, which is best explained by two-component mixing.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
章節目錄 IV
表目錄 VII
圖目錄 VIII
照片目錄 X

= 章節目錄 =
第一章 序論
1.1 前言………………………………………………………………….………1
1.2 地質背景…………………………………………………………….………2
1.3 華南地區超基性擄獲岩的時空分佈……………………………………….7
1.4 前人研究…………………………………………………………………….8
1.5 研究目的……………………………………………………………..…….11
第二章 研究方法及分析原理
2.1 野外調查及樣本採集………………………………..…………….………12
2.2 岩象觀察………………………………………....………………….……..14
2.3 礦物化學分析……………………………………………………….……..15
2.4 全岩地球化學分析………………………………………………………...15
2.4.1 X-光螢光分析(XRF)…..............………..…………………....15
2.4.2 感應耦合電漿質譜儀分析……………….….................................16
2.5 斜輝石顆粒集合體分析………………………………………………..… 18
2.6 斜輝石原位單點分析……………………………………………………...19
2.6.1 光薄片之前處理……………………………………………………19
2.6.2 分析礦物的定位……………………………………………………19
2.6.3 二次離子質譜儀之分析條件………………………………..……..20
2.7 鍶、釹同位素分析…………………...........................................................22
2.7.1 化學前處理…………………………………………………………22
2.7.2 質譜儀同位素分析……..................................................................23
2.8 年齡校正…………………………………………………………………...28
第三章 實驗分析結果
3.1 岩象學………………………. ……...…………….……………….………29
3.2 礦物化學………………….………………………….………………….....30
3.3 玄武岩地球化學…………………………………………………………...33
3.4 擄獲岩全岩地球化學……………………………………………………...38
3.4.1 主要元素……………………………………………………………38
3.4.2 微量元素……………………………………………………………40
3.5 斜輝石顆粒集合體之地球化學………………….….………………….....44
3.6 斜輝石原位單點分析之地球化學………………………………………...49
3.7 鍶、釹同位素地球化學…………………………………………………...55
第四章 討論
4.1 澎湖地函之熔融過程與增生地殼之厚度………………………….……..57
4.1.1 部分熔融對擄獲岩主要元素的影響……………………….……...57
4.1.2 礦物化學組成與部分熔融之關係………………………….……...59
4.1.3 由微量元素含量變化推估熔融程度……………………….……...61
4.1.4 平衡溫壓之估算………………………………..……….………….71
4.1.5 增生地殼之厚度…………………………………………….……...73
4.2 評估澎湖地區岩石圈地函交代換質作用的介質 …………….…………75
4.2.1 交代換質作用之種類………………………….…………………...75
4.2.2 水溶液介質或岩漿介質……….………………………..………….79
4.2.3 碳酸鹽質岩漿介質或矽質岩漿介質………………………………82
4.2.4 二期以上交代換質作用…………………….……………………...95
4.3 143Nd/144Nd-147Sm/144Nd年代學或交代換質作用…………..…….…....97
4.3.1 年代學的意義.…….………………………………………………..97
4.3.2 二元混合的結果……………………………………………………98
第五章 結論……………………………………………….…………………...…..100
參考文獻……………………………………………………………………….…...102
照片…………………………………………………………………………….…...116
參考文獻 中文參考資料

何恭算. (1998). 華南地區新生代玄武岩之岩石學與地球化學研究。國立台灣大學地質學研究所博士論文,共580頁
李寄嵎. (1994). 澎湖地區玄武岩類與福建地區基性岩脈之定年學與地球化學兼論中生代晚期以來中國東南地函之演化。國立台灣大學地質學研究所博士論文,共226頁。
徐義剛. (1999). 上地幔橄欖岩粒間組分的微量元素特徵及其成因探討, 科學通報, 44(15): 1670-1675.
徐義剛. (2000). 微量元素在尖晶石相和石榴子石相橄欖岩中的分佈, 中國科學(D輯), 30(3): 307-314.
莊文星. (1988). 台灣新生代晚期火山岩之定年與地球化學研究。國立台灣大學海洋研究所博士論文,共231頁
陳淑貞. (1998). 台灣西部新第三紀玄武岩之同位素及微量元素地球化學。國立台灣大學地質學研究所碩士論文,共80頁
劉叢強、解廣轟、增田彰正. (1995). 中國東部新生代玄武岩的地球化學-Ι主要元素和微量元素組成:岩石成因及源區特徵. 地球化學, 24(1): 1-19.
鍾孫霖. (1990). 台灣西部鹼性玄武岩中偉晶與包體之地球化學研究兼論中國東南沿海晚新生代板塊內部玄武岩的岩石成因。國立台灣大學地質學研究所博士論文,共183頁

英文參考資料

Adams, G. E. & Bishop, F. C. (1982). Experimental investigation of Ca–Mg exchange between olivine, orthopyroxene, and clinopyroxene: potential for geobarometry. Earth Planet. Sci. Lett. 57: 241-50.
Adams, G. E. & Bishop, F. C. (1986). The olivine–clinopyroxene comgeobarometer: experimental results in the CaO–FeO–MgO–SiO2 system. Contrib. Mineral. Petrol. 94: 230-237.
Arai, S. (1987). An estimation of the least depleted spinel peridotites on the basis of olivine–spinel mantle array. Neues Jahrb. Mineral., Monatsh. H8: 347-354.
Basu A. & Hart S. (1996). Earth Processes: Reading the Isotopic Code. Washington DC. Am Geophys Union 1-429.
Blusztaln, J., Seck, H. & Shimizu, N. (1992). Trace element behavior during two stage mantle metasomatism in the subcontinental lithosphere beneath the Eifel (Germany). Int. Geol.Congr. 2: 517 (abstract).
Bodinier, J.L. (1988). Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics 149: 67-88.
Bodinier, J.L., Vassoeur, G., Vernieres, J., Dupuy, C. & Fabries J. (1990). Mechanism of mantle metasomatism: geochemical evidance from the Lherz orogenic peridotite. J. Petrol. 31: 597-628.
Bedini, R.M. & Bodinier, J.L. (1999). Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochim. Cosmochim. Acta 63 (22): 3883-3900.
Brenan, J.M. & Waston, E.B. (1991). Partitioning of trace elements between carbonate melts and clinopyroxene and olivine at P-T mantle conditions. Geochim. Cosmichim. Acta 55: 2203-2214.
Carter, J.L. (1970). Mineralogy and chemistry of the earth's upper mantle based on partial fusion-partial crystallization model. Geo1.Soc.Am.Bill. 81: 2001-2034.
Choi, S.H., Kwon, S.T., Mukasa S.B. & Sagong, H. ( in press). Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chem. Geol.
Choi, S.H., Lee, J.I., Park, C.-H. & Moutte, J. (2002). Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Isl. Arc 11: 221-235.
Chough, S.K., Kwon, S.T., Ree, J.H. & Choi, D.K. (2000). Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Sci. Rev. 52: 175-235.
Chung, S.L., Sun, S.S., Tu, K., Chen, C.H. & Lee, C.Y. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol. 112: 1-20.
Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F. & Upton, B.G. (1999). Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J. Petrol. 40: 133-165.
Dautria, J.M., Dupuy, C., Takherist, D. & Dostal, J. (1992). Carbonate metasomatism in lithospheric mantle: the peridotitic xenoliths from a melilititic district of the Sahara Basin. Contrib. Mineral. Petrol. 111: 37-52.
Deng, F.L. & Macdougall, J.D. (1992). Proterozoic depletion of the lithosphere recorded in mantle xenoliths from inner Mongolia. Nature 360: 333-336.
Dick, H.J.B. & Bullen, T. (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86: 54-76.

DePaolo, D.J. (1981). Nd isotopes in the the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291: 193-196.
Downes, H. & Dupuy, C. (1987). Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth Planet. Sci. Lett. 82: 121–135.
Downes, H., Embey-Isztin, A. & Thirlwall, M. F. (1992). Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib. Mineral. Petrol. 107: 340-354.
Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. & Handler, M.R. (1997). A simple methid for the precise determination of ≧ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem. Geol. 134: 311-326.
Eiji, O. (2005). Water in mantle. Elements 1: 25-30.
Fan, W.M., Zhang, H.F., Baker, J., Jarvis, K.E., Mason, P.R., Menzies, M.A. (2000). On and off the North China craton: where is the Archean keel? J. Petrol. 41: 933-50.
Finnerty, A. A. & Boyd, F. R. (1978). Pressure-dependent solubility of Ca in forsterite coexisting with diopside and enstatite. Carnegie Institution of Washington, Yearbook 77: 713-717.
Forsyth, D.W. (1993). Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges. J. Geophy. Res. 98: 16073-16079.
Frey, F.A. & Green, D.H. (1974). The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta 38: 1023-1059.
Frey, F.A. & Prinz, M. (1978). Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38: 129-176.
Green, D.H. & Wallace, M. H. (1988). Mantle metasomatism by ephemeral carbonatite melts. Nature (Lodon) 336: 459-462.
Green, T.H., Adam, J. & Sie, S.H. (1992). Trace element partitionaing between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. Mineral. Petrol. 46: 179-184.
Green, T.H. & Adam, J. (2003). Experimentally- determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 Gpa, 650-700 ℃. Eur. J. Mineral. 15: 815-830.
Hamilton, D.L., Bedson, P. & Esson, J. (1989). The behaviour of trace elements in the evolution of carbonatites. In: Bell, K. (ed.) Carbonitites: Geneisis and Evolution. Lodon: Unwin Hyman. pp: 405-427.
Hauri, E.H., Shimizu, N., Dieu, J.J. & Hart, S.R. (1993). Evidance for hot spot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365: 221-227.
Hauri, E.H., Wagner, T.P. & Grove, T.L. (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 117: 149-166.
Hart, S.R. & Dunn, T. (1993). Experimental cpx/melt partitioning of 24 elements. Contrib. Mineral. Petrol. 113: 1-8.
Harte, B., Hunter, R.H. & Kinny, P.D. (1993). Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Phil. Trans. R. Lond. A 142: 1-21.
Hawkesworth, C.J. Rogers, N.W., van Calsteren, P.W.C. & Menzies, M.A. (1984). Mantle enrichment processes. Nature (London) 311: 331-335.

Herzberg, C.T. (1993) Lithosphere peridotites of the Kaapvaal craton. Earth Planet. Sci. Lett. 120: 13-19.
Ho, K., Chen, J., Smith, A.D. & Juang, W. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chem. Geol. 167: 355-372.
Hoang, N., Flower, M. & Carlson, R.W. (1996). Major, trace, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochim. Cosmochim. Acta 60: 4329-4351.
Hofmann, A.W. (1988). Chemical differentiation of the Earth: the relationship between mantle , continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90: 297-314.
Hofmann, A.W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385: 219-229.
Hunter, R.H. & McKenzie, D. (1989). The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet. Sci. Lett. 92: 347-356.
Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G. & Genshaft, Y.S. (1993). Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett., 119: 183-197.
Ionov, D.A., O'Reilly, S.Y., Kopylova, M.G. & Genshaft, Y.S. (1996). Carbonate-bearing mantle peridotitexenoliths from Spitsbergen: phase relationships, mineral compositions and trace element residence. Contrib. Mineral. Petro. 125: 375-392.
Ionov, D.A. (1998). Trace element composition of mantle-derived carbonatates and coexisting phases in peridotite xenoliths from alkali basalts. J. Petrol. 39: 1931-1941.
Johnson, K.T.M., Dick, H.J.B. & Shomizu, N. (1990). Melting in the oceanic upper mantle: ion microprobestudy of diopsides in abyssal peridotites. J. Geophys. Res. 95: 2661-2678.
Jones, J.H., Walker, D., Pickett, D.A., Murrell, M.T. & Beattie, P. (1995). Experimental investgations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between the immiscible carbonate and silicate liquids. Geochim. Cosmichim. Acta 59: 1307-1320.
Juang, W.S. & Chen, J.C. (1992). Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance. J. Southeast Asian Earth Sci. 7: 185-193.
Juang, W.S. & Chen, J.C. (1999). The nature and origin of Penghu basalt: a review. Bulletin of the Central Geological Survey 12: 147-200.
Kelemen, P.B. Johnson, K.T.M., Kinzler, R.J. & Irving, A.J. (1990). High-field strength element depletions in arc basalts due to mantle-magma interaction. Nature (London) 345: 521-524.
Kinzler, R.J. & Grove, T.L. (1992a). Primary magmas of mid-ocean ridge basalts 1, Experimental and methods. J. Geophy. Res. 87: 6885-6906.
Kinzler, R.J. & Grove, T.L. (1992b). Primary magmas of mid-ocean ridge basalts, 2, Applications. J. Geophy. Res. 97: 6907–6926.
Kohler, T.P. & Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotite from 2 to 60 kb with applications. Geochim. Cosmichim. Acta 54: 2375-2388.
Lu, C.P. & Wu, F.T. (1974). Two dimensional interpretation of a gravity profile across Taiwan. Bull Geol. Sury. Taiwan. 24: 125-132.
Maalψe, A. & Aoki, K. (1977). The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib. Mineral. Petrol. 63: 161-173.
MacDonald, G.A & Katsura, T. (1964). Chemical composition of Hawaiian lavas. J. Petrol. 5: 82-133.

McDonough, W.F. (1990). Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 101: 1-18.
McDonough, W.F. & Sun, S.S., (1995). The composition of the Earth. Chem.Geol. 120: 223-253.
Meen, J.K. (1987). Mantle metasomatism and carbonatites; an experimental study of a complex relationship. Geol. Soc. Am., Spec. Pap. 215: 91-100.
Menzies, M.A. (1983). Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity mofified by magmatic activity. In: C.J. Hawkesworth & M.J. Norry (eds.), Continental basalts and mantle xenoliths. Shiva Pub., London, 92-110.
Menizies, M.A. (1990). Archean, Proterozoic and Phanzerozoic lithospheric mantle. In: (Ed.), Continental Mantle. Oxford Univ. Press, Oxford, pp: 67-86.
Mercier, J.C. C. (1980). Single pyroxene thermobarometry. Tectonophysics 70: 1-37.
Mercier, J.C. C., Benoit, V. & Girardeau, J. (1984). Equilibrium state of diopside-bearing harzburgites from ophiolites: geobarometric and geodynamic implications. Contrib. Mineral. Petrol. 85: 391-403.
Mysen, B.O. (1976). Experimental determination of some geochemical parameters relating to conditions of equilibration of peridotite in the upper mantle. Am. Mineral. 61: 677-683.
Navon, O. & Stolper, E. (1987). Geochemical consequence of malt percolation: the upper mantle as a chromatographic column. J. Geol. 95: 285-307.
Nelson, D.R., Chivas, A.R., Chappell, B.W., & McCulloch, M.T., 1988. Geochemical and istopic systematic in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta 53: 1-17.
Neumann, E.R. (1991). Ultramafic and mafic xenoliths from Hierro, Canary Islands: evidence for melt infiltration in the upper mantle. Contrib. Mineral. Petrol. 106: 236-252.
Neumann, E.R., Wulff-Pedersen, E., Johnsen, K. & Krogh, E. (1995). Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos 35: 83-107.
Nissen, S. S., D. E. Hayes, P. Buhl, J. Diebold, B. Yao, W. Zeng, & Y. Chen. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea, J. Geophys. Res. 100: 22,407– 22,433.
O'Reilly, S.Y. & Griffin, W.L. (1988). Mantle metasomatism beneath weatern Victoria, Australia, I. Metasomatic processes in Cr-diopside lherzolites. Geochim. Cosmochim. Acta 52: 433-447.
O'Reilly, S.Y., Griffin, W.L. & Ryan, C.G. (1991). Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton microprobe study. Contrib. Mineral. Petrol. 109: 98-113.

Pearson, D.G., Carlson, R.W., Shirey, S.B., Boyd, F.R. & Nixon, P.H. (1995). Stabilisation of Archean lithospheric mantle: a Re–Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 134: 341-357.
Plank, T. & Langmuir, C.H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145: 325-394.
Qi, Q., Taylor, L.A. & Zhou, X. (1995). Petrology and geochemistry of mantle peridotite xenoliths from Southeastern China. J. Petrol. 36: 55-79.
Ree, J.H., Cho, M., Kwon, S.T. & Nakamura, E. (1996). Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology 24: 1071-1074.
Rivalenti, G., Mazzucchelli, M., Vannucci, R., Hofmann, A. W., Ottolini, L., Bottazzi, P. & Obermiller, W. (1995). The relationship between websterite and peridotite in the Balmuccia peridotite massif (NW Italy) as revealed by trace element variations in clinopyroxene. Contrib. Mineral. Petrol. 121: 275-288.
Rudnick, R.L., McDonough, W.F. & Chappell, B.C. (1993). Carbonatite metasomatism in the nothern Tanzanian mantle. Earth Planet. Sci. Lett. 114: 463-475.
Rudnick, R.L., Gao, S., Ling, W., Liu, Y. & McDonough, W.F. (2004). Petrology and geochemistry of spinel xenoliths from Hannuoba and Qixia, North China craton. Lithos 77: 609-637.
Schneider, M.E. & Eggler, D.H. (1986). Fluids in equilibrium with peridotite minerals: implications for mantle matasomatism. Geochim. Cosmochim Acta 50: 711-724.
Shi, L., Francis, D., Ludden, J., Frederiksen, A. & Bostock, M. (1998). Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera. Contrib. Mineral. Petrol. 131: 39-53.
Smith, A.D. & Huang, L.Y. (1997) The use of extration chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermalionization mass spectrometry. Cheng Kung Journal, Science, Engineering & Medicine Section 32: 1-10.
Song, Y. & Frey, F.A. (1989). Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: implications for subcontinental mantle heterogeneity. Geochim. Cosmochim. Acta 53: 97-113.
Stalder, R., Foley, S.F., Brey, G.P., & Horn, I. (1998) Mineral-queous fluid partitioning of trace elements at 900-1200 ℃ and 3.0-5.7 Gpa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta 62: 1781-1801.
Stosch, H.G. & Lugmair, G.W. (1986). Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet. Sci. Lett. 80: 281-298.
Streckeisen, A. (1989). To each plutonic rock its proper name. Earth Sci. Rev. 12: 1 – 33.
Sun, S.S. & McDonough W.F. (1989) Chemical and isotopic systematic of oceanic basalt: implications for mantle composition and processes. Geol. Soc. London, Spec. Publ. 42: 313-345.
Tatsumoto, M., Basu, A.R., Wankang, H., Junwen, W. & Guanghong, X. (1992). Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks and Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet. Sci. Lett. 113: 107-128.
Toyoda, K., Horiuchi, H. & Tokonami, M. (1994). Dupal anomaly of Brazilian carbonatites: geochemical correlations with hotspots in the South Atlantic and implications foe mantle source. Earth Planet. Sci. Lett. 126: 315-331.
Vaselli, O., Downes, H., Thirlwall, M. F., Dobosi, G., Coradossi, N., Seghedi, I., Szakacs, A. & Vannucci, R. (1995). Ultramafic xenoliths from Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J. Petrol. 38: 23-54.
Vaselli, O., Downes, H., Thirlwall, M. F., Vannucci, R. & Coradossi, N. (1996). Spinel-peridotite xenoliths from Kapfenstein (Graz Basin, Eastern Austria): a geochemical and petrological study. Mineral. Petrol. 57: 23-50.
Wallace, M.E. & Green, D.H. (1988). An experimental determination of primiry carbonatite magma composition. Nature 335: 343-346.
Walker, R.J., Carlson, R.W., Shirey, S.B. & Boyd, F.R. (1989). Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53: 1583-1595.

Walter, M.J., Sisson, T.W. & Presnall, D.C. (1995). A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth Planet. Sci. Lett. 135: 77-90.
Wang, K.L., O'Reilly, S.Y., Griffin, W.L., Chung, A.L., & Pearson, N.J. (2003). Proterozoic mantle lithosphere beneath the extended margin of the South China block: In situ Re-Os evidence. Geology 31: 709-712.
White, R. S. & McKenzie, D. (1989). Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophy. Res. B94: 7685–7729.
Wilkinson, J.F.G. (1975). Ultramafic inclusions and high pressure magacrysts from a nephelinite sill, Nandewar Mountains, northeast Newa South Wales, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks.
Witt-Eickschen, G., Seck, H.A. & Reys, Ch. (1993). Multiple enrichment processes and their relationships in the subcrustal lithosphere beneath the Eifel (Germany). J. Petrol. 34:1-22
Wooley, A.R. & Kempe, D.R.C. (1988). Carbonatites: nomenclature, average chemical compositions, and element distribution. In: K. Bell (Editir), Carbonatites. Unwin Hyman, London pp: 1-14.
Xu, X., O'Reilly, S.Y., Griffin, W.L. & Zhou, X. (1998). The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. In: Flower, M., Chung, S.L., Lo, C.H., Lee, Y.Y. (Eds), Mantle Dynamics and Plate Interactions in East Asia. Geodynam. Ser. 27.
Xu, X., O'Reilly, S.Y., Griffin, W.L. & Zhou, X. (2000). Genesis of young lithospheric mantle in southeastern China: a LAM-ICPMS trace element study. J. Petrol. 40: 111-148.
Xu, Y.G., Sun, M., Yan, W., Liu, Y., Huang, X.L. & Chen, X.M. (2002). Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J. Asian Earth Sci. 20: 937-954.
Xu, X., O’Reilly, S.Y., Griffin, W.L. & Zhou, X. (2003a). Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem. Geol. 198: 163-188.
Xu, Y.-G., Menzies, M.A., Thirlwall, M.F., Huang, X.L., Liu, Y. & Chen, X.M. (2003b). Reactive harzburgites from Huinan, NE China: products of the lithosphere–asthenosphere interaction during lithospheric thinning? Geochim. Cosmochim. Acta 67: 487-505.
Xu, Y.G., & Bodinier J.L. (2004) Contrasting Enrichments in high- and low-temperature mantle xenoliths from Nushan, Eastern China: results of a single metasomatism event during lithospheric accretion? J. Petrol. 45: 321-341
Yang H.J., Chen, J.C. & Yang H.Y. (1987).Geochemistry of ultramafic nodules in basalt rocks from Peiliao, Penghu Island, and Liutsu, northern Taiwan. Proc. Geol. Soc. China 30: 44-57.
Yang, H.J., Sen, G.T. & Shimizu, N.M. (1998). Mid-ocean ridge melting: constraints from lithospheric xenoliths at Oahu, Hawaii. J. Petrol. 39: 277-295.
Yaxley, G.M., Grawford, A.J. & Green, D.H. (1991). Evidance for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet. Sci. Lett. 107: 305-317.
Yeh, Y.-H., C.-H. Lin, B.-S. Huang, R.-C. Shih, & H.-Y. Yen. (1999). Variation of crustal thickness in Taiwan, inferred from wide-angle seismic data, Eos Trans. AGU 80(46), Fall Meet. Suppl., F1042.
Zangana, N. A., Downes, H., Thirlwall, M. F. & Hegner, E. (1997). Relationship between deformation, equilibration temperatures, REE and radiogenic isotopes in mantle xenoliths (Ray Pic, Massif Central, France): an example of plume–lithosphere interaction? Contrib. Mineral. Petrol. 127: 187-203.
Zangana, N. A., Downes, H., Thirlwall, M. F., Marriner, G. F. & Bea, F. (1998). Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chem. Geol. 153: 11-35.
Zhang, M., Suddaby, P., O’Reilly, S.Y., Norman, M. & Qiu, J. (2000). Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics 328: 131-156.
Zheng, J., O’Reilly, S.Y., Griffin, W.L., Lu, F. & Zhang, M. (1998). Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean craton, Eastern China. Int. Geol. Rev. 40: 471-499.
Zheng, J., O’Reilly, S.Y., Griffin, W.L., Lu, F., Zhang, M. & Pearson, N.J. (2001). Relic refractory mantle beneath the eastern North China block: significance for the lithosphere evolution. Lithos 57: 43-66.
Zheng, J.P., O'Reilly, S.Y., Griffin, W.L., Zhang, M., Lu, F.X. & Liu, G.L. (2004). Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Litho 74: 41-65.
Zindler, A. & Hart, S. (1986). Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14: 493-571.
Zou, H., Zindler, A., Xu, X. & Qi, Q. (2000). Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem. Geol. 171: 33-47.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw