進階搜尋


 
系統識別號 U0026-0812200911423794
論文名稱(中文) 光電化學氧化法之n型氮化鎵金氧半場效電晶體其電特性研究
論文名稱(英文) Investigation of Electrical Properties of Photoelectrochemistry Oxide Film Formation on n-type GaN MOSFETs
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 93
學期 2
出版年 94
研究生(中文) 譚偉文
研究生(英文) Wei-Wen Tan
學號 q1692128
學位類別 碩士
語文別 英文
論文頁數 69頁
口試委員 口試委員-李欣縈
口試委員-劉代山
指導教授-李清庭
召集委員-劉文超
中文關鍵字 光電化學  金氧半場效電晶體 
英文關鍵字 MOSFET  photoelectrochemistry  PEC 
學科別分類
中文摘要   氮化鎵(Gallium Nitride, GaN)材料半導體已經被廣泛地應用於在高溫和高功率電子儀器和光電子的設備方面。近年來,氮化鎵系列放大器已陸續有相關發表。傳統的GaN MOSFETs其閘極氧化物多為利用蒸鍍或濺鍍的方式製作,然而氧化物易受到上述製程條件影響導致品質不佳。在本篇論文,我們使用光電化學(photoelectrochemistry, PEC)氧化法直接成長氧化鎵(Ga2O3)作為閘極氧化層,如此可以避免GaN表面的污染並降低氧半接面的界面態。經由X光能譜分析儀(energy dispersive X-ray spectroscopy, EDS)、掃瞄式電子顯微鏡(scanning electron microscopy, SEM)以及原子力顯微鏡(atomic forced microscopy, AFM)之分析結果,可以發現熱處理後之緻密氮化鎵其組成比例並沒有被改變,此外雖然熱處理後我們可以得到較佳的介面態密度 6.28x1011 cm-2 eV-1,但是伴隨坑洞的產生導致元件特性下降,因此我們首度嘗試二次成長氧化層來改善此問題,由量測漏電流約為 10-12 A左右,顯示此方法的可行性。最後,利用間接蝕刻法來逐漸減少通道層厚度來實現完美之金氧半場效電晶體。
英文摘要  Gallium nitride based semiconductors have been extensively used in the high-temperature and high-power electronic devices and optoelectronic devices. With regard to the GaN amplifiers have been reported. In conventional GaN MOSFETs, the gate oxide is externally deposited, such as SiO2, MgO, and Cd2O3. However, the quality of gate oxide is affected by the contaminant of the GaN surface. It causes the degradation of the devices to have great gate leakage current and reduce the electric field. In this thesis, we use the photoelectrochemical (PEC) oxidation method to directly grow the Ga2O3 as the gate oxidation layer of the GaN MOSFETs. Obviously it can keep of the influence of the contaminant of the GaN surface and improve the quality of the interface between GaN and gate oxide. The measurement results of EDS, SEM and AFM were used to analyze. The composition of the denser Ga2O3 was not changed; moreover, a better interface density 6.28  1011 cm-2 eV-1 can be obtained, but the generation of following pinholes decreases the characteristic of devices. Therefore, we first attempt to grow the oxide twice to improve this problem, and the leakage current of around 10-12 A indicate the method is workable. Finally, indirect etch is applied to reduce the channel layer to accomplish perfect metal-oxide-semiconductor field effect transistors (MOSFETs).
論文目次 Contents

Abstract (Chinese) / I
Abstract / III
Contents / V
Table Captions / VIII
Figure Captions / IX

Chapter 1. Introduction / 1
1.1. Background and Motivation / 1
1.2. Organization of the Thesis / 3
References

Chapter 2. Theory / 8
2.1. PEC Oxidation Method / 8
2.1.1. Introduction
2.1.2. PEC oxidation method theory
2.1.3. Apparatus and experimental procedure
2.1.4. Discussions
2.2. Ohmic Contact of n-type GaN / 12
2.2.1. Mechanism
2.2.2. Fabrication and measurement
2.3. Operation of the n-channel Depletion Mode MOSFET / 13
2.3.1. Introduction
2.3.2. Threshold voltage
References

Chapter 3. N-type GaN MOS Capacitor / 27
3-1. Introduction / 27
3-2. Gallium-oxide Analysis / 28
3.2.1. EDS measurement
3.2.2. SEM observation
3-3. MOS Capacitor / 30
3.3.1. Device fabrication process
3.3.2. Interface state density
3.3.3. Deep depletion capacitance and photocapacitance-
voltage method
3.3.4. Measurements and discussions
References

Chapter 4. N-type Depletion Mode GaN MOSFET / 48
4-1. Introduction / 48
4-2. Experimental Procedure / 48
4.2.1. Introduction
4.2.2. Epitaxial growth of the studied devices
4.2.3. Fundamental of device fabrication
4.3. DC Performance / 51
4.3.1. Hall measurement
4.3.2. Ohmic contact resistance
4.3.3. Gate leakage current characteristics
4.3.4. IDS–VDS characteristics
References

Chapter 5. Conclusions and Prospects / 67
References
參考文獻 Chapter 1

[1] H. S. Bennett, Technology Roadmaps for Compound Semiconductors, J. Res. Natl. Inst. Stand. Technol., vol. 105, no. 3, 2000, pp. 429-439.
[2] Peter Y. Yu, and Manuel Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Berlin: Springer Verlag, 1999.
[3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys., vol. 76 , issue 3, 1994, pp. 1363-1398.
[4] R. Borges, Gallium nitride electronic devices for high-power wireless applications, RF Design, 2001, pp.72-81.
[5] S. Nakamura, T. Mukai and M. Senoh, High-Power GaN P-N Junction Blue-Light-Emitting Diodes, Jpn. J.Appl. Phys., vol. 30, 1991, L1998.
[6] S. Nakamura, T. Mukai and M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett., vol. 64, issue 13, 1994, pp.1687-1689.
[7] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campell, Current transport mechanisms in GaN-based metal-semiconductor-metal photodetectors, Appl. Phys. Lett., vol. 72, issue 5, 1998, pp. 542-544.
[8] N. Maeda, T. Tawara, T. Saitoh, K. Tsubaki, and N. Kobayashi, Doping design of GaN-based heterostructure field-effect transistors with high electron density for high-power applications, Phys. Stat. Sol.(a), vol. 200, no. 1, 2003, pp. 168-174.
[9] M. A. Khan, J. N. Kuznkia, A. R. Bhattarai, and D. T. Oslon, Metal Semiconductor Field Effect Transistor Based on Single Crystal GaN, Appl. Phys. Lett., vol. 62, issue 15, 1993, pp. 1786-1787.
[10] J. D. Brown, R. Borges, E. Piner, A. Vescan, S. Singhal, and R. Therrien, AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates, Solid-State Electron., vol. 46, issue 10, 2002, pp. 1535-1539.
[11] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide subtrates, IEEE Electron Dev. Lett., vol. 20, 1999, pp.161-163.
[12] K. Kumakura and T. Makimoto, High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base, Appl. Phys. Lett., vol. 86, issue 2, 2005, 023506-1(3p).
[13] H. C. Casey Jr., G. G. Fountain, R. G. Alley, B. P. Keller and S. P. DenBaars, Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN, Appl. Phys. Lett., vol. 68, issue 13, 1996, pp. 1850-1852.
[14] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Investigations of SiO2/n-GaN and Si3N4/n-GaN Insulator -Semiconductor Interfaces with Low Interface State Density, Appl. Phys. Lett., vol. 73, issue 6, 1998, pp. 809-811.
[15] B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, High-Quality Oxide/Nitride/Oxide Gate Insulator for GaN MIS Structures, IEEE Trans. Electron Dev. vol. 48, issue3, 2001, pp.458-464.
[16] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, High-Dielectric-Constant Ta2O5/n-GaN Metal-Oxide-Semiconductor Structure, Appl. Phys. Lett., vol. 77, issue 23, 2000, pp. 3788-3790.
[17] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, Photoenhanced wet oxidation of gallium nitride, Appl. Phys. Lett., vol. 76, issue 4, 2000, pp. 511-513.
[18] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, GaN metal-oxide-semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation, Appl. Phys. Lett., vol. 80, issue 3, 2002, pp. 446-448.
[19] Dieter K. Schroder, Semiconductor Material and Device Characterization, New York: John Wiley & Sons, 1998, pp.339.


Chapter 2

[1] S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, GaN: Processing, defects, and devices, J. Appl. Phys, vol. 86, no. 1, 1999, pp. 25-28.
[2] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions, Appl. Phys. Lett., vol. 76, no. 26, 2000, pp. 3923-3925.
[3] C. B. Vaftuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper, High temperature surface degradation of III-V nitrides, J. Vac. Sci. Technol. B, vol. 14, no. 6, 1996, pp. 3523-3531.
[4] M. S. Minsky, M. White, and E. L. Hu, Room-temperature photoenhanced wet etching of GaN, Appl. Phys. Lett., vol. 68, issue 11, 1996, pp. 1531-1533.
[5] H. Lu, Z. Wu, and I. Bhat, Photoassisted Anodic Etching of Gallium Nitride, J. Electrochem. Soc., vol. 144, 1997, pp. L8-L11.
[6] C. Youtsey, I. Adesida and G. Bulman, Highly anisotropic photoenhanced wet etching of n-type GaN, Appl. Phys. Lett., vol. 71, issue 15, 1997, pp. 2151-2153.
[7] C. T. Lee, H. W. Chen, and H. Y. Lee, Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN, Appl. Phys. Lett., vol. 82, issue 24, 2003, pp. 4304-4306.
[8] C. T. Lee, H. W. Chen, and H. Y. Lee, GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Electron Dev. Lett., vol. 24, issue 2, 2003, pp. 54-56.
[9] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, Deep ultraviolet enhanced wet chemical etching of gallium nitride, Appl. Phys. Lett., vol. 82, no. 8, 1998, pp. 939-941.
[10] H. O. Finkiea, Semiconductor Electrodes, Netherlands: Elsevier Science, 1998.
[11] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, Photoenhanced wet oxidation of gallium nitride, Appl. Phys. Lett., vol. 76, issue 4, 2000, pp. 511-513.
[12] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, 2002.
[13] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Clarecon Press, Oxford, 1988.
[14] M. E. Lin, Z. Ma, F. Y. Huang, Z. Fan, L. H. Allen, and H. Morkoc, Low resistance ohmic contacts on wide band-gap GaN, Appl. Phys. Lett., vol. 64, issue 8, 1994, pp. 1003-1005.
[15] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN, Appl. Phys. Lett., vol. 70, issue 1, 1997, pp. 57-59.
[16] C. T. Lee and H. W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[17] G. S. Marlow, M. Das, The effects of xontact size and nonzero metal resistance on the determination of special contact resistance, Solid-State Electron., vol. 25, 1982, pp. 91-94.
[18] G. K. Reeves, Specific contact resistance using a circular transmission line model, Solid-State Electron., vol. 23, 1980, pp. 487-490.
[19] G. K. Reeves and H. B. Harrison, An analytical model for alloyed ohmic contacts using a trilayer transmission line model, IEEE Electron Dev. Lett., vol. 42, issue 8, 1995, pp. 1536-1547.
[20] Yannis Tsividis, Operation and Modeling of the MOS Transistor, New York: OXFORD, 1999, pp.227-231.
[21] W. E. Wagner, III and M. H. White, Characterization of Silicon Carbide (SiC) Epitaxial Channel MOSFETs, IEEE Trans. Electron Dev. vol. 4, issue 11, 2000, pp.2214-2218.


Chapter 3

[1] C. T. Lee, H. Y. Lee, and H. W. Chen, GaN MOS Device Using SiO2-Ga2O3 Insulator Grown by Photoelectrochemical Oxidation Method, IEEE Electron Dev. Lett., vol. 24, 2003, pp.54-56.
[2] J. Tan, K. Das, J. A. Cooper, Jr., and M. R. Melloch, Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC, Appl. Phys. Lett., vol. 70, issue 17, 1997, pp. 2280-2281.
[3] 陳宏維, N型氮化鎵MOS元件製作與研究, 國立中央大學光電所, 碩士論文, 2002.
[4] C. T. Lee, H. W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[5] H. C. Casey Jr., G. G. Fountain and R. G. Alley, B. P. Keller and S. P. DenBaars, Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN, Appl. Phys. Lett., vol. 68, issue 13, 1996, pp. 1850-1852.
[6] T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J. Redwing, Capacitance-Voltage Characterization of AlN/GaN Metal-Insulator-Semiconductor Structures Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition, J. Appl. Phys., vol. 88, issue 4, 2000, pp. 1983-1986.
[7] Dieter K. Schroder, Semiconductor Material and Device Characterization, New York: John Wiley & Sons, 1998, chapter 6.
[8] J. Tan, M. K. Das, J. A. Cooper Jr. and M. R. Mellocha, Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC, Appl. Phys. Lett., vol. 70, issue 17, 1997, pp. 2280-2281.


Chapter 4

[1] Albrecht Mőschwitzer, Semiconductor Devices, Circuits and Systems, New York: OXFORD, 1991.
[2] C. T. Lee, H. W. Chen, and H. Y. Lee, GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Electron Dev. Lett., vol. 24, issue 2, 2003, pp. 54-56.
[3] C. T. Lee and H. W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[4] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, 2002.
[5] G. S. Marlow and M. Das, The effects of xontact size and nonzero metal resistance on the determination of special contact resistance, Solid-State Electron., vol. 25, 1982, pp. 91-94.
[6] G. K. Reeves, Specific contact resistance using a circular transmission line model, Solid-State Electron., vol. 23, 1980, pp. 487-490.
[7] G. K. Reeves and H. B. Harrison,  An analytical model for alloyed ohmic contacts using a trilayer transmission line model, IEEE Electron Dev. Lett., vol. 42, issue 8, 1995, pp. 1536-1547.


Chapter 5

[1] C. C. Tsai and C. S. Chang, Low-etch-pit-density GaN substrates by regrowth on free-standing GaN films, Appl. Phys. Lett., vol. 80, issue 20, 2002, pp. 3718-3720.
[2] C. Kim, I. K. Robinson, J. Myoung, K. H. Shim, and K. Kim, Buffer layer strain transfer in AlN/GaN near critical thickness, J. Appl. Phys., vol. 85, issue 8, 1999, pp. 4040-4044.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw