進階搜尋


 
系統識別號 U0026-0812200911414183
論文名稱(中文) 後勁溪河口結構物興建前後海岸線變遷之研究
論文名稱(英文) Shoreline Changes due to the construction of Hojing Creek Estuary Structure
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系專班
系所名稱(英) Department of Hydraulics & Ocean Engineering (on the job class)
學年度 93
學期 2
出版年 94
研究生(中文) 陳文忠
研究生(英文) Wung-John Chen
學號 n8792107
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 口試委員-楊文衡
口試委員-林意楨
口試委員-李兆芳
指導教授-許泰文
中文關鍵字 導流堤 
英文關鍵字 groin 
學科別分類
中文摘要   臺灣地區早在數十年前,即開始於各河川出海口陸續設置導流堤,以改善河口淤積的情況,惟早期並無適當之近岸水動力模式,無法針對導流堤設置後,河口附近水動力機制之變化進行分析評估。許等人 (2000) 已成功研發了適用於臺灣本土海域之波潮流模式,而Klein等人 (2003) 則以Hsu及Evans (1989) 所提出的岬灣經驗公式為基礎,發展了MEPBAY (Model of Equilibrium Planform of BAYed beaches) 海岸線變遷應用軟體,因此吾人擬採用上述模式,評估導流堤對河口附近海域之水動力與海岸線變遷機制的影響。

  本文選定高雄市後勁溪河口導流堤為研究對象,首先蒐集後勁溪河川水文資料、河口近岸海象與氣象資料,作為模式輸入之資料庫,再應用波潮流模式模擬導流堤興建前後,不同波浪條件作用下,河口附近海域之近岸波流場變化。此外,吾人更進一步以MEPBAY軟體,預測後勁溪出海口導流堤兩側之靜態平衡岸線,藉以了解未來海岸線變遷之趨勢。

  研究結果顯示後勁溪導流堤之範束已達到預期效果,淤積地點已由河口往外延伸,以往河口淤積現象因導流堤的興建而獲得改善。此外,突堤效應造成後勁溪河口導流堤「北淤南侵」現象,而堤口處地形則有呈現喇叭狀的趨勢。另由後勁溪導流堤兩側之靜態平衡岸線,可預測未來海岸線變遷趨勢將形成侵淤共存現象。
英文摘要   In the past decades, many kinds of groin have been constructed at the estuary for the improvement of the estuary sediments. For the lack of near shore hydraulic dynamic model, it was very difficult to analyze the dynamic change near estuary after the construction of groin. Hsu et al. (2000) has successfully developed the wave and current model for Taiwan seashore region and Klern et al.(2003) has also developed the MEPBAY(Model of Equilibrium Planform of BAYed beaches) shoreline change model based on the headland control experience model suggested by Hsu and Evan(1989). Therefore, this study is to analyze the effects of hydrodynamic and shoreline changes after the construction of groin at river estuary by means of above models.

  The groin at the estuary of Hojing Creek in Kaohsiung has been chosen for this study. Data collection, including the hydrological data of Hojing creek, the oceanographic and meteorological observation data at the estuary, was first conducted and used as data base for the input of the applied models. Then, the shoreline changes before and after the construction of groin will be analyzed and simulated under different wave conditions by the application of wave and current models. Finally, this study predicts the static shoreline at the both sides of the groin for the evaluation of future shoreline changes by the application of MEPBAY model.

  The results reveal that the confinement of groin has been achieved, the sediments was shifted from the estuary to the outlet sea. Hence the condition of sediments at river estuary was improved. Also, the groin effect on groins results in the erosion at south side and the sediment at north side of groin. The topographic changes at the bead of groin tends to accumulate into trumpet shape. Furthermore, it is possible to predict that both the sediments and erosion would exist simultaneously during shoreline changes according to the static balancing shoreline at both sides of the groin.
論文目次 目錄
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 I X

第一章 緒論 1
1-1 研究動機與目的 1
1-2 前人研究 3
1-3 本文組織 10

第二章 基本資料蒐集與分析 11
2-1 後勁溪自然環境資料 11
2-2 氣象資料 17
2-3 海象資料 19
2-4 海岸實測地形資料 22

第三章 波流場及海岸線變遷模式 25
3-1 數值模式 25
3-2 數值方法 30
3-3海岸線變遷模式 38
3-4 模式驗証 41

第四章 近岸波流場模擬與海岸線變遷分析 44
4-1 數值計算條件 44
4-2 後勁溪河口導流堤興建前後比較 46

第五章 結論與建議 67
5-1 結論 67
5-2 建議 67

參考文獻 69
參考文獻 1.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction.” Proc.
13th Int. Conf. Coastal Engng., Canada, ASCE, pp. 471-490 (1972).
2.Berkhoff, J.C.W., N. Booy, and A.C. Radder, “Verification of Numerical Wave
Propagation Models for Simple Harmonic Linear Water Waves,” Coastal Engng.,
Vol. 6, pp. 255-279 (1982).
3.Bettess, P. and O. C. Zienkiewicz, “Diffraction and Refraction of Surface
Waves Using Finite and Infinite Element,” Int. J. Numerical Methods in
Engng., Vol. 11, pp. 1271-1290 (1977).
4.Booij, N., “Gravity Waves on Waver With Non-Uniform Depth and Current,”
Rep. No. 81-1, Dept. Civil Engrg., Delft Univ. of Tech., Delft, The
Netherlands (1981).
5.Broker Hedegaard, I., R. Degigaard and J. Fredsoe,“Onshore/ Offshore
Sediment Transport and Morphological Modeling of Coastal Profiles,” Proc.
ASCE Special Conf. Coastal Sediment (1991).
6.Chamberlain, P.G. and D. Porter, “The modified mild-slope equation,” J.
Fluid Mech., Vol. 291, pp. 393-407 (1995).
7.Chen, H.S. and C. C. Mei, “Oscillation and Wave Force on an Offshore
Harbor,” Ralph M. Parsons Laboratory, Massachussetts Institute of
Technology, Report No. 190 (1974).
8.Copeland, G.J.M., “A Practical Alternative to the Mild-Slope Wave
Equation,” Coastal Engng., Vol. 9, pp. 125-149 (1985).
9.Cullen, M.J.P., “A simple finite element method for meteorological
problems,” J. Inst. Math. Appls., Vol. 11, pp. 15-31 (1973).
10.Dronker, J.J., “Tidal computations of rivers, coastal areas and seas,” J.
Hydraulics Div., ASCE, Vol. 95, No. HY1, pp. 29-77 (1969).
11.Ebersole, B.A., M.A. Cialone and M.D. Prater, “Regional Coastal Processes
Numerical Modeling System,” Department of the Army, Waterway Experiment
Station, Corps of Engineers (1986).
12.Gourlay, M. R., “Wave Setup and Wave Generated Current in the Lee of a
Breakwater or Headland,” Proc. 14th Conf. on Coastal Eng., 1976-1995 (1974).
13.Grotkop, G., “Finite element analysis of long-period water waves,”
Computer Methods in Applied Mech. and Engng., Vol. 2, pp. 147-157 (1973).
14.Horikawa, K., Nearshore Dynamics and Coastal Processes, University of Tokyo
Press (1988).
15.Hsu, J.R.C. and C. Evans, “Parabolic bay shapes and applications,” Proc.
Inst. Civil Engrs., Part 2, London: Thomas Telford , 87: 557-570. (1989).
16.Hsu, T.W. and C.C. Wen, “A Study of Using Parabolic Model to Describe Wave
Breaking and Wide-angle wave incidence,” Journal of the Chinese Institute
of Engineers, Vol. 23, No. 4, pp. 515-527 (2000).
17.Hsu, T.W. and C.C. Wen, “A Parabolic Equation Extended to Account for
Rapidly Varying Topography,” Ocean Engng., Vol. 28, in press (2001a).
18.Hsu, T.W. and C.C. Wen, “On Radiation Boundary Conditions and Wave
Transformation Across Surf Zone”.
19.Isobe, M., “A Parabolic Equation Model for Transformation of Irregular
Waves Due to Refraction, Diffraction and Breaking,” Coastal Eng. in Japan,
Vol. 30, pp. 33-47 (1987).
20.Ito, Y. and K. Tanimoto, “A Method of Numerical Analysis of Wave
Propagation-Application to Wave Diffraction and Refraction,” Proc. 13th
Int. Coastal Engng. Conf., ASCE, pp. 503-522 (1982).
21.Kawahara, M., H. Hirano, K. Tsubota and K. Inagaki, “Selective Lumping
finite element method for shallow water flow,” Int. J. Numerical Methods in
Engng., Vol. 2, pp. 89-112 (1982).
22.Kirby, J.T., “A general wave equation for waves over ripple beds,” J.
Fluid Mech., Vol. 162, pp. 171-186 (1986).
23.Leendertse, J.J., “Aspects of a computational model for long period water
wave propagation,” Rand Memorandum, RM-5294-PR, Santa Monica, California,
USA (1967).
24.Leendertse, J.J., R.C. Alexander and S.K. Liu, “A three-dimensional model
for Estuaries and coastal seas: Vol. 1, principles of computation,” Rand
Memorandum, R-1417-OWRR, Santa Monica, California, USA (1973).
25.Leendertse, J.J. and S.K. Liu, “A three-dimensional model for Estuaries and
coastal seas: Vol. 4, turbulent energy computation,” Rand Memorandum, R-
2187-OWRT, Santa Monica, California, USA (1977).
26.Li, B. and K. Anastasiou, “Efficient Elliptic Solvers for the Mile-Slope
Equation Using the Multigrid technique,” Coastal Engng., pp. 245-266 (1992).
27.Li, B., “An Evolution Equation for Water Waves,” Coastal Engng., Vol. 23,
pp. 227-242 (1994a).
28.Li, B., “A Generalized Conjudgate Gradient Model for the Mild-Slope Eqn.,”
Coastal Engng., Vol. 123, pp. 215-225 (1994b).
29.Li, B., “Parabolic Model for Water Waves,” J. Waterway Port Coastal and
Ocean Engng., Vol. 123, No. 4, pp. 192-199 (1997).
30.Liu, P.L.F. and T.K. Tsay, “On Weal Reflection of Water Waves,” J. Fluid
Mech., Vol. 131, pp. 59-71 (1983).
31.Liu, P.L.F., “Wave-current interactions on a slowly varying topography,”
J. Geophys. Res., Vol. 88, pp. 4421-4426 (1983).
32.Longuet-Higgins, M.S. and R.W. Stewart, “Changes in the Form of Short
Gravity Waves on Long Wave and Tidal Currents,” J. Fluid Mech., Vol. 8, pp.
563-583 (1960).
33.Maa, J.P.Y., T.W. Hsu, C.H. Tsai and W.J. Juang, “Comparison of Wave
Refraction and Diffraction Models,” J. Coastal Research, Vol. 16, No. 4,
pp. 1073-1082 (2000).
34.Madsen, P.A. and J. Larsen, “An Efficient Finite-Difference Approach to the
Mild-Slope Equation,” Coastal Engng., Vol. 11, pp. 329-351 (1987).
35.Massel, S.R., “Extended refraction-diffraction equation for surface
waves,” Coastal Engng., Vol. 19, pp. 97-126 (1993).
36.Nishimura, H., “Numerical Simulation of Nearshore Circulations,” Proc.
29th Japanese Conf. On Coastal Eng., JSCE, pp. 333-337 (1982).
37.Nishimura, H., K. Maruyama and T. Sakurai, “On the Numerical Computation of
Nearshore Circulations,” Coastal Engineering in Japan, Vol. 28, pp. 137-145
(1985).
38.Ohnaka, S. and A. Watanabe, “Modeling of Wave-Current Interaction and Beach
Change,” Proc. 22th Int. Conf. Coastal Engng., ASCE, New York, pp. 2443-
2456 (1990).
39.Panchang, V.G., W. Chen, B. Xu, K. Schlenker, Z. Demirbilek, M. Okihiro,
“Exterior Bathymetric Effects in Elliptic Harbor Wave Models”, Journal of
Waterway, Port, Coastal, and Ocean Engng., Vol. 126, pp. 71-78 (2000).
40.Radder, A.C., “On the Parabolic Equation Method for Water Wave
Propagation,” J. Fluid Mech., Vol. 95, No. 1, pp. 159-176 (1979).
41.Reniers, A.J.H.M. and J.A. Battjes, “A Laboratory Study of Longshore
Currents over Barred and Non-Barred Beaches,” Coastal Eng., Vol. 30, pp.1-
22 (1997).
42.Sergent, P., F. Ropert, O. Orcel, M. Houari, D. Duhamel and G. Dhatt,
“Water wave in harbor area: appreciation of open boundary condition,” J.
Waterway, Port, Coastal and Ocean Engng., ASCE, Vol. 128, No. 5, pp. 184-189
(2002).
43.Suh, K.D., C. Lee and W.S. Part, “Time-Dependent Equations for Wave
Propagation on Rapidly Varying Topography,” Coastal Eng., Vol. 32, pp. 91-
117 (1997).
44.Taylor, C. and J.M. Davis, “Tidal and long wave propagation-a finite
element approach,” Computational Fluid, Vol. 3, pp. 125-148 (1975).
45.Tsai, C.T., C.T. Kuo and L.T. Su, “A study on typhoon-flood simulation in
tidal river,” Proc. R.O.C-Japan Joint Seminar on Water Resources Engng.,
Taipei, pp. 104-149 (1987).
46.Tsay, T.K. and P.L.F. Liu, “A Finite Element Model for Wave Refraction and
Diffraction,” Applied Ocean Research, Vol. 5, No. 1, pp. 30-37 (1983).
47.Watanabe, A. and K. Maruyama, “ Numerical Modeling of Nearshore Wave Field
under Combined Refraction, Diffraction and Breaking,” Coastal Engng. in
Japan, Vol. 29, pp. 19-39 (1986).
48.Watanabe, A. and M. Dibajnia, “A Numerical Model of Wave Deformation in
Surf Zone,” Proc. 21th Int. Coastal Engng. Conf., Malaga, Spain, ASCE, Vol.
1, pp. 578-587 (1988).
49.高雄市政府水工處,「高雄市草潭埤(後勁溪)河口治理規劃報告」 (1985)。
50.李兆芳、郭仲仁,「三維流場有限元素多層深度積分模式」,中華民國第十一屆海洋工
程研討會論文集,383-400 頁 (1989)。
51.蕭政宗、蔡長泰,「感潮河川颱風暴潮模式及其於淡水河系之應用」,中國土木水利工
程學刊,第三卷,第三期 (1991)。
52.林銘崇、楊博仁、黃正昌,「波流互制作用下近岸海域地形變遷之數值模式」,第十六
屆海洋工程研討會論文集,B1~15頁 (1994)。
53.許泰文、歐善惠、張憲國,「花蓮海岸侵蝕防護對策之研究」,第十六屆海洋工程研討
會論文集,D186-206頁 (1994)。
54.謝正倫、曾志民,「波浪、潮汐及洪水作用下海岸地形變遷之數值模擬」,第七屆水利
工程研討會論文集,F17-32頁 (1994)。
55.許泰文等,「建立波潮流與海岸變遷模式(1/6)」,經濟部水資源局,計畫編號
MODA/WRB/ST-8900020V1 (2000)。
56.許泰文等,「建立波潮流與海岸變遷模式 (II)」,經濟部水資局計畫編號:
MOEA/WRB/ST-900002V2 (2001)。
57.許泰文等,「建立波潮流與海岸變遷模式(3/4)」,經濟部水資源局,計畫編號
MODA/WRB/ST-910002V3 (2002)。
58.經濟部水利處,「高雄海岸觀測調查分析」 (2001)。
59.許泰文,「近岸水動力學」,中國土木水利工程學會 (2003)。
60.許榮中,「海岸新工法-人工岬灣與養灘綜合工法」。海下技術月刊,第十三卷第二
期,35-48頁 (2003)。
61.經濟部水利署第六河川局,「彌陀鄰近海岸環境及景觀整體改善研究規劃」 (2004)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw