進階搜尋


 
系統識別號 U0026-0812200911411123
論文名稱(中文) 探討紫杉醇誘導人類口腔癌症細胞株細胞凋亡之機制
論文名稱(英文) The Mechanism of Paclitaxel-induced apoptosis in human oral cancer cell lines
校院名稱 成功大學
系所名稱(中) 細胞生物及解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 93
學期 2
出版年 94
研究生(中文) 林志壕
研究生(英文) Chih-Hao Lin
電子信箱 cilia8586@yahoo.com.tw
學號 t9692106
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 口試委員-劉明毅
指導教授-蕭振仁
指導教授-黃步敏
中文關鍵字 紫杉醇  口腔癌症細胞株  細胞凋亡 
英文關鍵字 Oral cancer cell lines  Apoptosis  Paclitaxel 
學科別分類
中文摘要   細胞凋亡在多細胞生物的體內平衡扮演了重要的角色,而且硫胱氨酸蛋白脢(caspase)、Bcl-2家族蛋白酶和絲裂原活化蛋白激酶 (mitogen-activated protein kinase, MAPK)都有參與調控細胞的機制。目前有很多種抗癌藥物可以引起癌症細胞進行細胞凋亡中,如:紫杉醇 (paclitaxel)。紫杉醇是一種抗微小管的藥劑,可以抑制正常細胞分裂週期的進行而達到治療癌症的效果。口腔癌在台灣的發生率有逐年提高的現象,並且紫杉醇已經被用來治療頭頸部癌症。然而紫杉醇誘導頭頸部癌症細胞凋亡的機制仍然不清楚,了解抗癌藥物誘導細胞凋亡的機制對於臨床上的用藥是很重要的。因此,在我們要研究紫杉醇是如何誘導口腔癌症細胞株 (HSC-3, OEC-M1和OC3) 進行細胞凋亡。值得特別關注的是OEC-M1和OC3為台灣本土性的口腔癌細胞株。我們發現紫杉醇 (50和500 nM)處理這三株口腔癌症細胞株48小時後,可以引起口腔癌細胞株型態上的改變,並可以降低細胞的存活率。除此之外,紫杉醇可引起三株口腔癌細胞株去氧核醣核酸的斷裂。OEC-M1及OC3的細胞分裂週期有明顯的停留在G2/M週期,而且三株口腔癌症細胞株的subG1週期都是呈現增加的現象,指出紫杉醇引起口腔癌症細胞死亡是透過細胞凋亡機制。在OEC-M1以及OC3口腔癌症細胞株中,我們發現有硫胱氨酸蛋白脢 (caspase-3, -6, -7, -8和-9) 的活化,而且有看到poly (ADP-ribose) polymerases (PARP)失去活性。除此之外,絲裂原活化蛋白激酶家族中的JNK和Bcl-2都有被磷酸化的現象。另外我們使用硫胱氨酸蛋白脢的抑制劑 (Z-VAD) 去抑制口腔癌症細胞株 (OEC-M1和OC3) 細胞凋亡,結果發現口腔癌症細胞株的存活率可以增加,但是卻無法使細胞死亡的情形回復到百分之百。總結之,紫杉醇可以誘導口腔癌症細胞株進行細胞凋亡,並且硫胱氨酸蛋白脢、Bcl-2蛋白酶以及JNK有參與在其中。
英文摘要   Cell suicide or apoptosis plays an important role in the maintenance of cellular homeostasis in multicellular organisms, and the caspase cascades, Bcl-2 family proteins and mitogen-activated protein kinases (MAPKs) are involved in apoptosis. In cancer cell lines, apoptosis can be induced by many kinds of therapy-related inducer, such as paclitaxel (Taxol), a microtubule-stabilizing agent, suppressing several kinds of tumors by arresting cell-cycle progression. In Taiwan, the incidence of oral cancer increases in recent years, and paclitaxel has been successfully used for treatment of head and neck cancers. However the detail mechanism is still not sufficient. Understanding the molecular mechanisms of a chemotherapeutic agent on cancer cells is indispensable for clinical applications. Hence, we investigated the effect and mechanism of paclitaxel on oral cancer cell lines (HSC-3, OEC-M1, and OC3). It should be noted that, OEC-M1 and OC3 cells are indigenous oral cancer cell lines in Taiwan. We observed that 50 nM and 500 nM paclitaxel could cause morphological changes and significantly decreased cell viability after 48 hours treatment in all three cell lines. Additionally, paclitaxel induced the DNA fragmentation of these cell lines, in which OEC-M1 and OC3 cells significantly arrested at G2/M phase. In addition, the amount of subG1 increased among three cell lines, which indicated that paclitaxel triggered cell death through apoptosis. In OEC-M1 and OC3 cells, the activation of the caspases-3, -6, -7, -8, -9 and the cleavage of poly ADP-ribose polymerase (PARP) were detected. Moreover, the JNK and Bcl-2 were phosphorylated in OEC-M1 and OC3 cell lines. In caspase general inhibitor experiment, the general inhibitor (Z-VAD-FRM) could increase the cell viability, but could not prevent all cell death. In summary, paclitaxel could induce oral cancer cell lines apoptosis through caspase and MAPKs cascades in OEC-M1 and OC3 cells.
論文目次 TABLE OF CONTENTS
ABSTRACT
Chinese……………………………………………………………..i
English……………………………………………………………..ii
INTRODUCTION……………………………………………………..1
MATERIALS AND METHODS……………………………………8
Chemicals………………………………………………………….8
Cells and cell culture………………………………………………9
Morphology study…………………………………………………9
MTT assay………………………………………………………..10
Flow cytometry analysis………………………………………….10
Immunoblot analysis……………………………………………...11
Caspase inhibitors treatment……………………………………...12
Statistics…………………………………………………………..12
RESULTS
Effects of paclitaxel on morphological changes in human
oral cancer cell lines……………………….……………………..13
Effects of paclitaxel on cell viability in human oral cancer
cell lines………………………………….……………………….13
Effects of paclitaxel on cell cycle progression in human oral
Cancer cell lines………………………………………………......14
The percentage of paclitaxel-induced subG1 and G2/M phases
of cell cycle progression in human oral cancer cell lines……...…15
Effects of paclitaxel on caspases-8 and -9 protein expression
in human oral cancer cell lines…………………………………...16
Effects of paclitaxel on effector caspase proteins expression
in human oral cancer cell lines………………………………...…17
Effects of paclitaxel on PARP protein cleavage in human
oral cancer cell lines……………………………………………...18
The effects of paclitaxel on the activation of MAPK pathway
in human oral cancer cell lines…………………………………...19
The effects of paclitaxel on the expression of p-Bcl-2 paclitaxel in
human oral cancer cell lines……………………………………...20
The effects of general caspase inhibitor (z-VAD-fmk)
in paclitaxel-induced cell death in human oral cancer cell lines....21
DISCUSSION………………………………………………………...23
REFERENCES……………………………………………………….29
參考文獻 Adams JM and Cory S. The Bcl-2 protein family: arbiters of cell survival.
Science. 281:1322-1326, 1998.
Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A,
Marshall CJ and Cowley S. Identification of the sites in MAP kinase kinase-1
phosphorylated by p74raf-1. EMBO J. 13(7):1610-1619, 1994.
Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M and Izumo S. Direct
activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase
in adult cardiac myocytes. J Biol Chem. 277(12):10244-10250, 2002.
Ashkenazi A and Dixit VM. Death receptors: signaling and modulation. Science.
281:1305-1308, 1998.
Brichese L, Cazettes G and Valette A. JNK is associated with Bcl-2 and PP1 in
mitochondria: paclitaxel induces its activation and its association with the
phosphorylated form of Bcl-2. Cell Cycle. 3(10):1312-1319, 2004.
Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C and Braguer D.
Tubulin is an inherent component of mitochondrial membranes that interacts
with the voltage-dependent anion channel. J Biol Chem. 277(37):33664-33669,
2002.
Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N,
Kharbanda S and Anderson KC. JNK-dependent release of mitochondrial protein,
Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 278
(20):17593-17596, 2003.
Chen YC, Huang YL and Huang BM. Cordyceps sinensis mycelium activates PKA and
PKC signal pathways to stimulate steroidogenesis in MA-10 mouse Leydig tumor
cells. Int J Biochem Cell Biol. 37(1): 214-23, 2005.
Cheng SC, Luo D and Xie Y. Taxol Induced BcL-2 Protein Phosphorylation In
Human Hepatocellular Carcinoma QGY-7703 Cell Line. Cell Biology
international. 25(3): 261-265, 2001.
Crews CM, Alessandrini A and Erikson RL. The primary structure of MEK, a
protein kinase that phosphrylates the ERK and product. Science. 258:478-480,
1992.
Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH and Webster KA.
Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes
after oxidative stress. Biochem J. 362(3):561-571, 2002.
Fang GF, Chang BS, Kim CN, Perkins C, Tohmpson CB and Bhalla KN. “Loop”
domain is necessary for taxol-induced mobility shift and phosphorylation of
Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of
cytochrome c and apoptosis. Cancer Res. 89:3202-3208, 1998.
Ferlini C, Raspaglio G, Mozzetti S, Distefano M, filippetti F, Martinelli E,
Ferrandina G, Gallo d, Ranelletti FO and Scambia G. Bcl-2 down-regulation is
a novel mechanism of paclitaxel resistance. Mol Pharmacol. 64:51-58, 2003.
Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, Glisson B,
Trotti A, Ridge JA, Chao C, Peters G, Lee DJ, Leaf A, Ensley J and Cooper J.
Concurrent chemotherapy and radiotherapy for organ preservation in advanced
laryngeal cancer. N Engl J Med. 349(22):2091-2098, 2003.
Gan Y, Wientjes MG, Schuller DE and Au JL. Pharmacodynamics of taxol in human
head and neck tumors. Cancer Res. 56(9):2086-2093, 1996.
Green DR and Reed JC. Mitochondria and apoptosis. Science. 281 (5381):1309-
1312, 1998.
Gupta S. Molecular steps of death receptor and mitochondrial pathways of
apoptosis. Life Sci. 69(25-26):2957-2964, 2001.
Huisman C, Ferreira CG, Broker LE, Rodriguez JA, Smit EF, Postmus PE, Kruyt FA
and Giaccone G. Paclitaxel triggers cell death primarily via caspase-
independent routes in the non-small cell lung cancer cell line NCI-H460.
Clin Cancer Res. 8(2):596-606, 2002.
Kaczirek K, Schindl M, Weinhausel A, Scheuba C, Passler C, Prager G, Raderer
M, Hamilton G, Mittlbock M, Siegl V, Pfragner R and Niederle B. Cytotoxic
activity of camptothecin and paclitaxel in newly established continuous
human medullary thyroid carcinoma cell lines. J Clin Endocrinol Metab. 89
(5):2397-2401, 2004.
Kottke TJ, Blajeski AL, Martins LM, Mesner PW Jr, Davidson NE, Earnshaw WC,
Armstrong DK and Kaufmann SH. Comparison of paclitaxel-, 5-fluoro-2'-
deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence
for EGF-induced anoikis. J Biol Chem. 274(22):15927-15936, 1999.
Lee LF, Li G, Templeton DJ and Ting JP. Paclitaxel (Taxol)-induced gene
expressin and cell death are both mediated by the activation of c-Jun NH2-
terminal kinase (JNK/SAPK). J Biol Chem. 273(43):28253-28360, 1998.
Liao PC and Lieu CH. Cell cycle specific induction of apoptosis and necrosis
by paclitaxel in the leukemic U937 cells. Life Sci. 76:1623-1639, 2005.
Lieu CH, Chang YN and Lai YK. Dual cytotoxic mechanisms of submicromolar taxol
on human leukemia HL-60 cells. Biochemical Pharmacology. 53: 1587–1596,
1997.
Liggett W and Forastiere AA. Chemotherapy advances in head and neck oncology.
Semin Surg Oncol. 11:265-271, 1995.
Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY and Chen YJ. Establishment of OC3
oral carcinoma cell line and identification of NF-kappa B activation
responses to areca nut extract. J Oral Pathol Med. 33(2):79-86, 2004.
Liu XM, Wang LG, Kreis W, Budman DR and Adams LM. Differential effect of
vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in
MCF-7 cells. British Journal of Cancer, 85(9): 1403-1411, 2001.
Marone M, D’Andrilli G, Das N, Ferlini C, Chatterjee S and Scambia G.
Quercetin abrogates taxol-mediated signaling by inhibiting multiple kinases.
Exp Cell Res. 270(1):1-12, 2001.
McDaid HM and Horwitz SB. Selective potentiation of paclitaxel (taxol)-induced
cell death by mitogen-activated protein kinase kinase inhibition in human
cancer cell lines. Mol pharmaco. 60(2):290-301, 2001.
Meng CL, Yang CY, Shen KL, Wong PY and Lee HK. Inhibition of the synthesis of
eicosanoid-like substances in a human oral cancer cell line by interferon-
gamma and eicosapentaenoic acid.
Arch Oral Biol. 43(12):979-86, 1998.
Miller AB, Hoogstraten B, Staquet M and Winkler A. Reporting results of cancer
treatment. Cancer. 47(1):207-214, 1981.
Monnerat C, Faivre S, Temam S, Bourhis J and Raymond E. End points for new
agents in induction chemotherapy for locally advanced head and neck cancers.
Ann Oncol. 13(7):995-1006, 2002.
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F and Riccardi C. A rapid
and simple method for measuring thymocyte apoptosis by propidium iodide
staining and flowcytometry. J Immunol Methods. 139(2):271 279, 1991.
Nicotera P. Apoptosis and age-related disorders: role of caspase- dependent
and caspase-independent pathways. Toxicol Let. 127(1-3):189- 195, 2002.
Nosseri C, Coppola S and Ghibelli L. Possible Involvement of Poly(ADP-Ribosyl)
Polymerase in Triggering Stress-Induced Apoptosis. Exp Cell Res. 212(2): 367-
73, 1994.
Park SJ, Wu CH, Gordon JD, Zhong X, Emami A and Safa AR. Taxol induces caspase-
10-dependent apoptosis. J Biol Chem. 279(49):51057-51067, 2004.
Pignon JP, Bourhis J, Domenge C and Designe L. Chemotherapy added to
locoregional treatment for head and neck squamous-cell carcinoma: three meta-
analyses of updated individual data. MACH-NC Collaborative Group. Meta-
Analysis of Chemotherapy on Head and Neck Cancer. Lancet. 355(9208):949-955,
2000.
Psyrri A, Kwong M, DiStasio S, Lekakis L, Kassar M, Sasaki C, Wilson LD,
Haffty BG, Son YH, Ross DA, Weinberger PM, Chung GG, Zelterman D, Burtness
BA and Cooper DL. Cisplatin, fluorouracil, and leucovorin induction
chemotherapy followed by concurrent cisplatin chemoradiotherapy for organ
preservation and cure in patients with advanced head and neck cancer: long-
term follow-up. J Clin Oncol. 22(15):3061-3069, 2004.
Pushkarev VM, Starenki DV, Saenko VA, Namba H, Kurebayashi J, Tronko MD and
Yamashita S. Molecular mechanisms of the effects of low concentrations of
taxol in anaplastic thyroid cancer cells. Endocrinology. 145(7):3143-3152,
2004.
Rodi DJ, James RW, Sanganee HJ, Holton RA, Wallace BA and Makowski L.
Screening of a library of phage-displayed peptides identifies human Bcl-2 as
a taxol-binding protein. J. Mol. Biol. 285(1):197-203, 1999.
Rowinsky EK and Donehower RC. Paclitaxel (taxol). N Engl J Med. 332(15):1004-
1014, 1995.
Rowinsky EK. The development and clinical utility of the taxane class of
antimicrotubule chemotherapy agents. Annu Rev Med. 48:253-374, 1997.
Seidman R, Gitelman I, Sagi O, Horwitz SB and Wolfson M. The role of ERK 1/2
and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian
carcinoma cells. Exp Cell Res. 268(1):84-92, 2001.
Srivastava RK, Sasaki CY, Hardwick JM and Longo DL. Bcl-2-mediated drug
resistance: inhibition of apoptosis by blocking nuclear factor of activated
T lymphocytes (NFAT)-induced Fas ligand transcription. J Exp Med. 190(2):253-
65, 1999.
Stennicke HR and Salvesen GS. Caspases - controlling intracellular signals by
protease zymogen activation. Biochim Biophys Acta. 1477(1-2): 299-306, 2000.
Stumm S, Meyer A, Lindner M, Bastert G, Wallwiener D and Guckel B. Paclitaxel
treatment of breast cancer cell lines modulates Fas/Fas ligand expression
and induces apoptosis which can be inhibited through the CD40 receptor.
Oncology. 66(2):101-11, 2004.
Tishler RB, Schiff PB, Geard CR, and Hall EJ. Taxol: a novel radiation
sensitizer. Int J Radiat Oncol Biol Phys. 22(3):613-617, 1992.
Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O,
Miyazono K, Noda T and Ichijo H. ASK1 is required for sustained activations
of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2(3):222-228, 2001.
von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B and Daniel PT.
Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-
independent, caspases-3/-8-driven mitochondrial amplification loop.
Oncogene. 22(15):2236-2247, 2003.
Wada T and Penninger JM. Mitogen-activated protein kinases in apoptosis
regulation. Oncogene. 23(16):2838-2849, 2004.
Wang LG, Liu XM, Kreis W and Budman DR. The effect of antimicrotubule agents
on signal transduction pathways of apoptosis: a review. Cancer Chemother
Pharmacol. 44(5):355-361, 1999.
Wang TH, Wang HS and Soong YK. Paclitaxel-induced cell death: where the cell
cycle and apoptosis come together. Cancer. 88(11):2619-2628, 2000.
Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T and Wimalasena J.
Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-
activated protein kinase through both Ras and apoptosis signal-regulating
kinase pathways. J Biol Chem. 273(9):4928-4936, 1998.
Wu HP, Hsu LP and Chen PR. Treatment of Laryngeal Cancer at Buddhist Tzu Chi
General Hospital. Tzu Chi Med J. 13(2):217-222, 2001.
Yan Zhang, Hai Lu, Paul Dazin and Yvonne Kapila. Squamous cell carcinoma cell
aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and
integrin alphav mediate survival signals through focal adhesion kinase. J
Biol Chem. 279(46):48342-48349, 2004.
Zelivianski S, Spellman M, Kellerman M, Kakitelashvilli V, Zhou XW, Lugo E,
Lee MS, Taylor R, Davis TL, Hauke R and Lin MF. ERK inhibitor PD98059
enhances docetaxel-induced apoptosis of androgen-independent human prostate
cancer cells. Int J Cancer, 107(3): 478-485, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw