進階搜尋


 
系統識別號 U0026-0812200911403754
論文名稱(中文) 微流體多功能電化學檢測系統
論文名稱(英文) Multi-functional Electrochemical Detecting System Using Microfluidic Technology
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 93
學期 2
出版年 94
研究生(中文) 林建甫
研究生(英文) Chen-Fu Lin
電子信箱 n9692130@ccmail.ncku.edu.tw
學號 n9692130
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-李輝煌
口試委員-李國賓
口試委員-楊瑞珍
中文關鍵字 微閥門  微幫浦  鈣離子  微機電  電化學感測  酸鹼值 
英文關鍵字 pH value  Electrochemical sensor  Micro-valve  Micro-pump  MEMS  Calcium ion 
學科別分類
中文摘要   本研究成功地利用微機電製程技術,將微流體操控系統、電化學感測電極與環境監控系統等整合於單一感測晶片中,微流體操控元件係以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)材料製作氣動式微幫浦與微閥門。電化學感測電極中,以氯化銀(AgCl)當作參考電極,並使用氧化層SLBTLO (SiO2-LiO2-BaO-TiO2-La2O3)作為酸鹼值感測器與ETH 129( N, N, N’, N’-tetracyclohexyl-3-oxa-pentane-diaminde)離子選擇性薄膜作為鈣離子感測器,搭配環境監控系統-包括溫度監控系統、流速監控系統,可以精確與即時地回報環境參數,使電化學感測結果更正確,且可監控幫浦流速,瞭解檢體使用量等功能。本檢測晶片測試結果中,包括酸鹼值感測器之靈敏度達-57.74mV/pH與鈣離子靈敏度34.7mV/decade,且檢測時間只需200秒內即可同時測量出酸鹼值與鈣離子之濃度,與傳統大型檢測系統比較,本研究晶片不但可以同時檢測多種離子,且檢測檢體需要量從原本20㏄降至100μL,成為一快速且方便的手持式檢測工具。
英文摘要  This paper presents a microfluidic chip capable of automatically performing precise and continuous pH measurements. It is an electrochemical sensing system integrated with a microfluid and environmental monitoring system based on MEMS-technology. The chip’s microfluidic control devices and microchannels are made of PDMS (Polydimethylsiloxane), and its reference electrodes fabricated with AgCl. One of the two sensing electrodes is fabricated by sputtering a layer of SLBTLO (SiO2-LiO2-BaO-TiO2-La2O3) for evaluating pH value. The ion selective membrane on the second electrode is made from ETH 129( N, N, N’, N’-tetracyclohexyl-3-oxa-pentane-diaminde)which allows for the sensing of calcium ion concentration. Temperature sensors feed back information around the sensing electrodes to immediately calibrate the electrochemical sensors. A flow sensor monitors the flow rate of the micropumps to measure the volume of sample transported. The performance of the developed sensing chip is close to that of traditional sensing systems. The sensitivity of pH value and calcium ion concentration is -57.74mV/pH and 34.7mV/decade. The chip can simultaneously detect hydrogen and calcium ion concentration within 200 seconds and the sample size needed is 100μL. Additionally, a pneumatic fluid-control device facilitates the automatic sample injection and a continuous sensing operation. The developed system can provide a convenient and portable tool in a wide range of biomedical applications.
論文目次 第一章 緒論.....................1
1-1 前言...................... 1
1-2 生物微機電技術簡介 ...............2
1-3 研究動機與目的 .................4
1-4 研究方法 ....................6
1-5 文獻回顧 ....................8
1-5-1 微幫浦文獻回顧 ................ 8
1-5-2 電化學感測器文獻回顧 .............16
1-6 論文架構 ....................19

第二章 理論與設計..................21
2-1 微流體操控系統 .................21
2-1-1 微幫浦與微閥門的原理探討 ...........22
2-1-2 微流管道設計考量 ...............26
2-2 環境監控系統 ..................30
2-2-1 溫度監控系統 .................31
2-2-2 流速監控系統 .................34
2-3 電化學感測系統 .................34
2-4 晶片設計尺寸參數 ................38

第三章 感測晶片製作.................43
3-1 製程規劃 ....................43
3-2 光罩設計與製作 .................44
3-3 基本製程技術 ..................45
3-4 晶片表面清潔 ..................45
3-4-1 黃光微影製程 .................47
3-4-2 金屬薄膜沈積製程 ...............51
3-4-3 微注模技術 ..................52
3-4-4 晶片封裝與接合技術 ..............54
3-5 晶片製作流程 ..................55
3-5-1 PDMS微流管道製程 ..............56
3-5-2 玻璃基板電極製作 ...............60
第四章 結果與討論 .................66

4-1 多功能感測晶片動作流 ..............66
4-2 微氣動幫浦與微閥門實驗與分析 ..........68
4-2-1 實驗架設 ...................68
4-2-2 微幫浦與微閥門測試結果 ............69
4-3 環境監控系統測試實驗與分析 ...........71
4-3-1 流速感測系統測試實驗與分析 ..........71
4-3-2 溫控監控系統測試實驗與分析 ..........73
4-4 電化學感測系統測試實驗與分析 ..........75
4-4-1 酸鹼值測試實驗之配製與架設 ..........75
4-4-2 酸鹼值測試實驗結果與分析 ...........75
4-4-4 鈣離子感測器實驗之藥品配製與架設 .......80
4-4-5 鈣離子感測器實驗結果與分析 ..........81

第五章 結論與未來展望 ...............84
5-1 結論 ......................84
5-2 未來展望 ....................86
參考文獻 [1]. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, D. J. Harrison, “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine,” Sensors and Actuators B, Vol.81, pp. 369-376, 2002.

[2]. D. J. Graves, “Powerful tools for genetic analysis come of age,” Trends Biotechnology, Vol. 17, pp. 127-134, 1999.

[3]. C. B. Epstein and R. A. Butow, “Microarray technology - enhanced versatility, persistent challenge,” Current Opinion in Biotechnology, Vol. 11, pp. 36-41, 2000.

[4]. G. H. W. Sanders and A. Mans, “Chip-based Microsystems for genomic and proteomic analysis,” Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.

[5]. N. H. Chiem and D. J. Harrison, “Microchip system for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination, ” Clinical Chemistry, Vol. 44, pp. 591-598, 1998.

[6]. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based clinical and biochemical analysis system,” Journal of Chromatography A, Vol. 987, pp. 197-204, 2003.

[7]. A. C. R. Grayson, R. S. Shawgo, Y. Li, and M. J. Cima, “Electronic MEMS for triggered delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 173-184, 2004.

[8]. M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 581-587, 2004.

[9]. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Advanced Drug Delivery Reviews, Vol. 55, pp. 349-377, 2003.

[10]. J. Janata, “Principle of chemical sensor, Plenum Press, ” New York, 1989.

[11]. A. J. Bard and L. R. Faulkner, “Electrochemical methods,” John Wiley & Sons, New York, 2001.

[12]. P. T. Moseley, J. O. W. Norries, and D. E. Willians, “Techniques and Mechanisms in gas sensor,” Adam Hilger, New York, 1990.

[13]. 邱秋燕、周澤川,”電化學感測器之原理與應用”,化工,第16卷,第6期,第49頁,1993。

[14]. W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” VCH Verlaysgesesllschaft mbH, New York, 1991.

[15]. M. L. Hitchmam, “Measurement of dissolved oxygen.” John Wiley & Sons, New York, 1978.

[16]. A. Richter, A. Bund, M. Keller and K. F. Arndt, “Characterization of a microgravimetric sensor based on pH sensitive hydrogels,” Sensors and Actuators B, Vol. 99, pp. 579-585, 2004.

[17]. D. R. Reyes, D.Iossifidis, P. A. Auroux and A. Manz, ”Micro total analysis systems. “1. Introduction, Theory, and Technology,” Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.

[18]. P. A. Auroux, D. R. Reyes, D. Iossifidisand A. Manz, “Micro total analysis aystems. 2. analytical standard operations and applications, ” Analytical Chemistry, Vol. 74, pp. 2637-2652, 2002.

[19]. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.

[20]. A. Manz, D. J. Harrison, J. C. Verpoorte, and H. Ludi, H. M. Widmer, “Integrated electroosmotic pumps and flow manifolds for total chemical analysis systems,” Proceeding of Transducers 1991, pp. 939-941, 1991.

[21]. R. Zengerle and M. Richter, “Simulation of microfluid systems,” Journal of Micromechanics and Microengineering, Vol. 4, No. 4, pp. 192-204, 1994.

[22]. G. Zhan, T. Lo, L. Liu, and P. Tsien, “A silicon membrane micropump with integrated bimetallic actuator,” Chinese Journal of Electronics, Vol. 5, No. 2, pp. 29-35, 1996.

[23]. W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, “A Titanium-Nickel shape memory alloy actuated micropump,” Proceedings of Transducers 1997, pp. 361-364, 1997.

[24]. J. G. Smits, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators, Vol. A 21-23, pp. 203-206, 1990.

[25]. O. C. Jeongand, and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm,” Sensors and Actuators A, Vol. 83, pp. 249-255, 2000.

[26]. F. C. M. Van De Pol, H. T. G. Van Lintel, M. Elwenspoek and J. H. J. Fluitman, “Thermopneumatic micropump based on microengineering techniques,” Sensors and Actuators A, Vol. 21, pp. 198-202, 1990.

[27]. C. Vieider, O. Ohman and Eldertig, “A pneumatically actuated micro valve with a silicon rubber membrane for integrated with fluid-handling systems,” Solid-State Sensors and Actuators, Vol. 2, pp. 284-286, 1995.

[28]. E. Makino, T. Mitauya, T. Shibata, “Fabrication of TiNi shape memory micropump,” Sensors and Actuators A: Physical, Vol. 88, pp. 256-262, 2001.

[29]. A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “A valveless planar pump isotropically etched in silicon,” Proceedings of Micromechanics Europe, pp. 120-123, 1995.

[30]. J. M. Berg, R. Anderson, M. Anaya, B. Lahlouh, M. Holtz, T. Dallas, “A two-stage discrete peristaltic micropump,” Sensors and Actuators A: Physical, Vol. 104, pp. 6-10, 2003.

[31]. J. G. Spencer, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators A: Physical, Vol. 21-23, pp. 203-206, 1990.

[32]. M. A. Unger, H. P Chou., T. Thorsen, A. Scherer and S. R. Quake, ”Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, 2000.

[33]. A. Y. Fu, H. P. Chou, Spence, F. H. Arnold and S. R. Quake, “An integrated microfabricated cell sorter”, Analytical Chemistry, Vol. 74, pp. 2451-2457, 2002.

[34]. 郭盈成, ”新式微幫浦與微閥門之設計與製作”,國立成功大學工程科學研究所碩士論文, 2003。

[35]. H. Glaster, “The pH measurements-fundamentals, methods, applications, instruments,” VCH, 1991.

[36]. S. Glab, A. Hulanicki, G. Edwall, and F. Ingan, “Metal-metal oxide and metal oxide electrodes as pH sensor,” Critical Review in Analytical Chemistry, Vol. 21, pp. 29-47, 1989.

[37]. Y. Abe and M. Maeda, “Origin of pH-glass electrode potentials and development of pNa-responsive glasses, Journals of Electrochemistry,” Vol. 147, pp. 787-791, 2000.

[38]. W. Y. Liao, Y. G. Lee, C. Y. Huang, H. Y. Lin, Y. C. Weng, and T. C. Chou, “Telemetric Electrochemical Sensor,” Biosensors and Bioelectronics, Vol. 20, pp.482-490, 2004.

[39]. E. Bakker, D. Diamond, A. Lewenstam, and E. Pretsch, “Ion sensors: current limits and new trend,” Analytical Chemistry Acta 1999, Vol. 393, pp. 11-18, 1999.

[40]. M. S. Frant, “Ion-selective electrodes: historical, mechanism of response, selectivity and concept review,” Analyst 1994, Vol. 119, pp. 2293, 1994.

[41]. P. Buhlmann, E. Pretsch, and E. Bakker, “Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors,” Chemistry Review, Vol. 98, pp. 1593-1687, 1998.

[42]. 王詩涵,”微製造技術應用於鈣離子感測器及奈米氧化鎢二氧化氮感測器,” 國立成功大學化學工程研究所碩士論文, 2003。

[43]. D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays, ” Analytical Chemistry, Vol. 71, pp. 4669-4698, 1999.

[44]. G. B. Lee, J. H. Hu, and J. J. Miau, “A flexible skin with temperature sensor array,” Journal of the Chinese Institute of Engineers, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw