進階搜尋


 
系統識別號 U0026-0812200911403347
論文名稱(中文) 離體大鼠心室肌細胞上兩種ATP敏感性鉀離子通道之生物物理特性
論文名稱(英文) Biophysical Properties of Two Types of ATP-Sensitive K+ Channels in Rat Ventricular Myocytes
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 93
學期 2
出版年 94
研究生(中文) 吳智陽
研究生(英文) Adonis-Z. Wu
電子信箱 adonisklim@yahoo.com.tw
學號 s3692106
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 口試委員-吳豐森
召集委員-任卓穎
指導教授-吳勝男
中文關鍵字 向內整流性通道單體  大鼠心室肌細胞  膜片箝制  ATP敏感性鉀離子通道 
英文關鍵字 inwardly rectifying K+ channel subunits (Kir6.1  patch clamp  diazoxide  rat ventricular myocytes  ATP-sensitive K+ (KATP) channels 
學科別分類
中文摘要   ATP敏感性鉀離子 (KATP) 通道在生理上,扮演著細胞膜電位變化與細胞代謝之間聯繫的功能性色。該種鉀離子通道由SUR調節蛋白及向內整流性通道單體Kir6.X (屬於向內整流蛋白第六族) ,四組複合體結合形成八隅體而構成完整的KATP離子通道。現在已知在心室肌細胞中主要為Kir6.2型態的KATP離子通道所組成。在本研究中,我們發現在離體大鼠心室肌細胞中,同時存在著兩種不同單體 (Kir6.1及Kir6.2) 所組成的KATP離子通道,具有不同電生理特性的功能性表現。使用膜片箝制技術紀錄單一離子通道,結果顯示兩種不同電導的KATP離子通道,分別為大電導 (58 pS) 及小電導 (21 pS) 存在於該細胞中。在電生理動力學特性方面,兩種KATP離子通道於開啟平均時間及瞬時動力上非常相似。同時使用典型的KATP離子通道促進劑pinacidil及dinitrophenol,與抑制劑glibenclamide做藥理測試,發現兩種通道皆有KATP通道的藥理特性。然而另一種促進劑diazoxide僅能打開小電導KATP離子通道。此外,經由西方點墨法、免疫化學染色及反轉錄聚合酶連鎖反應,證實Kir6.1及Kir6.2單體在離體大鼠心室肌細胞中之蛋白質及mRNA均有表現,提供兩種KATP離子通道存在的分子證據。更進一步使用diazoxide及dinitrophenol測試單細胞內的鈣離子變化,發現兩者皆可降低心室肌細胞的胞內鈣離子濃度,這個結果顯示影響KATP離子通道活性同時會影響胞內鈣離子的恆定。以上結果顯示,兩種不同電生理特性的KATP離子通道在心臟細胞生理上扮演了重要的功能性角色。
英文摘要   The ATP-sensitive K+ (KATP) channels are known to provide the functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K+ channel subunits (Kir6.1 & Kir6.2) which sulfonylurea receptors are associated with have been reported to constitute the KATP channels. In this study, we provide evidence to show two types of KATP channels with different biophysical properties functionally expressed in rat ventricular myocytes. Using patch clamp technique on isolated rat ventricular myocytes, we found that single-channel conductances for the different two types of KATP channels are 58 and 21 pS. The kinetic properties, including the mean open time and bursting kinetics, did not differ between these two types KATP channels. Diazoxide only activated small-conductance KATP channel, while pinacidil and dinitrophenol stimulated both channels. Both of these KATP channels are sensitive to inhibition by glibenclamide, in a similar magnitude. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Furthermore, single cell Ca2+ imaging revealed that similar to dinitrophenol, diazoxide could reduce the concentration of intracellular calcium. These two types of KATP channels are functionally related to the activity of heart cells.
論文目次 Abstract in Chinese 1
Abstract 2
Introduction 3
Material and Methods 7
Result 16
Discussion 23
Conclusion 29
References 30
Figures 36
Appendix 47
About the auther 60
參考文獻 Akao M, et al. (1997) J Clin Invest, 100:3053-3059.
Allard B, et al. (1995) J Physiol. 485:283-296.
Ashcroft FM. (1988) Annu Rev Neurosci. 11:97-118.
Ashcroft FM, Gribble, FM. (1998) Trends Neurosci. 21:288-294.
Baumann P, et al. (2002) Am J Physiol Heart Circ Physiol. 283:H2296-2305.
Babenko AP, et al. (1998a) Annu Rev Physiol. 60:667-687.
Babenko AP, et al. (1998b) Circ Res. 83:1132-1143.
Bajgar R, et al. (2001) J Biol Chem. 276:33369–33374.
Baron A, et al. (1999) Circ Res. 85:707-715.
Brochiero E, et al. (2002) Am J Physiol Renal Physiol. 282:F289-300.
Clement IV JP, et al. (1997) Neuron 18:827-838.
Coetzee WA, et al. (1999) Ann N Y Acad Sci. 868:233-285.
Cohen MV, et al. (2000) Annu Rev Physiol. 62:79-109.
Cui Y, et al. (2001) Proc Natl Acad Sci U S A. 98:729-734.
Das M, et al. (2003) J Physiol. 547:893-902
D'hahan N, Jacquet H, Moreau C, Catty P, Vivaudou M. (1999a) A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K(+) channels by K(+) channel openers. Mol Pharmacol. 56: 308-315.
D'hahan N, Moreau C, Prost AL, Jacquet H, Alekseev AE, Terzic A, Vivaudou M. (1999b) Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP. Proc Natl Acad Sci U S A. 96: 12162-12167.
Fukushima Y. (1981) Single channel potassium currents of the anomalous rectifier. Nature. 294: 368-371.
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 81:1072-1082.
Grover GJ, Garlid KD. (2000) ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 32: 677-695.
Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A. (2003) Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284: H2106-H2113.
Inagaki N, Gonoi T, Clement IV JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1164-1170.
Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S. (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 16: 1011-1117.
Ishide N, Urayama T, Inoue K, Komaru T, Takishima T. (1990) Propagation and collision characteristics of calcium waves in rat myocytes. Am J Physiol. 259: H940-950.
Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y. (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 271: 24321-24324.
Kuniyasu A, Kaneko K, Kawahara K, Nakayama H. (2003) Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts. FEBS Lett 552: 259-263.
Lawrence KM, Chanalaris A, Scarabelli T, Hubank M, Pasini E, Townsend PA, Comini L, Ferrari R, Tinker A, Stephanou A, Knight RA, Latchman DS. (2002) KATP channel gene expression is induced by urocortin and mediates its cardioprotective effect. Circulation. 106: 1556-1562.
Liu Y, Sato T, O'Rourke B, Marban E. (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation. 97: 2463-2469.
McKillen HC, Davies NW, Stanfield PR, Standen NB. (1994) The effect of intracellular anions on ATP-dependent potassium channels of rat skeletal muscle. J Physiol. 479: 341-351.
McManus OB, Blatz AL, Magleby KL. (1987) Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pflugers Arch. 410: 530-553.
Morrissey A, Rosner E, Lanning J, Parachuru L, Dhar Chowdhury P, Han S, Lopez G, Tong X, Yoshida H, Nakamura TY, Artman M, Giblin JP, Tinker A, Coetzee WA. (2005) Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 5: 1.
Murry CE, Jennings RB, Reimer KA. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124-1136.
Noma, A. (1983). ATP-regulated K+ channels in cardiac muscle. Nature (London) 305: 147-148.
Ohmori H, Yoshida S, Hagiwara S. (1981) Single K+ channel currents of anomalous rectification in cultured rat myotubes. Proc Natl Acad Sci U S A. 78: 4960-4964.
Okuyama Y, Yamada M, Kondo C, Satoh E, Isomoto S, Shindo T, Horio Y, Kitakaze M, Hori M, Kurachi Y. (1998) The effects of nucleotides and potassium channel openers on the SUR2A/Kir6.2 complex K+ channel expressed in a mammalian cell line, HEK293T cells. Pflugers Arch. 435: 595-603.
Quayle JM, Bonev AD, Brayden JE, Nelson MT. (1995) Pharmacology of ATP-sensitive K+ currents in smooth muscle cells from rabbit mesenteric artery. Am J Physiol. 269: C1112-1118.
Quayle JM, Nelson MT, Standen NB. (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 77: 1165-1232.
Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B. (2002) Nuclear KATP channels trigger nuclear Ca(2+) transients that modulate nuclear function. Proc Natl Acad Sci U S A. 99: 9544-9549.
Rodrigo GC, Davies NW, Standen NB. Diazoxide causes early activation of cardiac sarcolemmal KATP channels during metabolic inhibition by an indirect mechanism. Cardiovasc Res. 61: 570-579.
Sanada S, Kitakaze M, Asanuma H, Harada K, Ogita H, Node K, Takashima S, Sakata Y, Asakura M, Shinozaki Y, Mori H, Kuzuya T, Hori M. (2001) Role of mitochondrial and sarcolemmal K(ATP) channels in ischemic preconditioning of the canine heart. Am J Physiol Heart Circ Physiol. 280: H256-263.
Satoh E, Yamada M, Kondo C, Repunte VP, Horio Y, Iijima T, Kurachi Y. (1998) Intracellular nucleotide-mediated gating of SUR/Kir6.0 complex potassium channels expressed in a mammalian cell line and its modification by pinacidil. J Physiol. 511: 663-674.
Seino, S. (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 61: 337-362.
Seino S, Miki T. (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 81: 133-176.
Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norman RI. (2003) Distribution of Kir6.0 and SUR2A ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 35: 445-459.
Sun X, Cao K, Yang G, Huang Y, Hanna ST, Wang R. (2004) Selective expression of Kir6.1 protein in different vascular and non-vascular tissues. Biochem Pharmacol. 67: 147-156.
Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marban E, Nakaya H. (2002) Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 109: 509-516.
Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H. (2003) Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation. 107: 682-685.
Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y, Shimamoto K. (2001) Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP) channel openers: differences from preconditioning in the role of sarcolemmal K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol. 364: 226-232.
Toyoda Y, Friehs I, Parker RA, Levitsky S, McCully JD. (2000) Differential role of sarcolemmal and mitochondrial K(ATP) channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol. 279: H2694-2703.
van Bever L, Poitry S, Faure C, Norman RI, Roatti A, Baertschi AJ. (2004) Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 287: H850-859.
Weik R, Neumcke B. (1990) Effects of potassium channel openers on single potassium channels in mouse skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol. 342: 258-263.
Wu SN, Chen CC, Li HF, Lo YK, Chen SA, Chiang HT. (2002) Stimulation of the BKCa channel in cultured smooth muscle cells of human trachea by magnolol. Thorax. 57: 67-74.
Wu SN, Li HF, Chiang HT. (2000) Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells. J Membr Biol. 178: 205-214.
Wu SN, Liu SI, Hwang TL. (1998) Activation of muscarinic K+ channels by extracellular ATP and UTP in rat atrial myocytes. J Cardiovasc Pharmacol 31: 203-211.
Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, Kurachi Y. (1997) Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol. 499: 715-720.
Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. (1999) Antisense oligodeoxynucleotides of sulfonylurea receptors inhibit ATP-sensitive K+ channels in cultured neonatal rat ventricular cells. Pflugers Arch 437: 400-408.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw