進階搜尋


 
系統識別號 U0026-0812200911385955
論文名稱(中文) 探討寡胜肽膜透酶對於A群鏈球菌吸附作用的影響
論文名稱(英文) Effects of Oligopeptide Permease in Group A Streptococcal Adhesion
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系碩博士班
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 93
學期 2
出版年 94
研究生(中文) 曾鈺晶
研究生(英文) Yu-Ching Tseng
電子信箱 yuching87@yahoo.com.tw
學號 t3692103
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 口試委員-林以行
口試委員-蔡佩珍
指導教授-吳俊忠
口試委員-何漣漪
中文關鍵字 吸附  A群鏈球菌 
英文關鍵字 Streptococcus pyogenes  adhesion 
學科別分類
中文摘要   化膿性鏈球菌(A群鏈球菌,GAS)為一重要的人類病原菌, 會引起許多人類的疾病, 一般認為GAS 的表面蛋白與細胞外基質相互作用在感染的初期扮演著重要的角色。 寡胜肽膜透酶(Oligopeptide Permease, Opp)主要由五個蛋白所組成(OppABCDE), 附著於細胞膜上屬於 ABC-transporter 群; 在先前我們實驗室已經證實Opp確實在GAS的致病機轉扮演著相當重要的角色; 本研究的目的是(i)瞭解GAS的各表面蛋白對於不同細胞株的吸附能力; (ii)瞭解細胞外基質與GAS的表面蛋白是否影響其吸附作用; (iii)瞭解環境因子是否影響 GAS表面蛋白的表現而影響其吸附作用; (iv)探究Opp可能的接受器。 先前本實驗室已構築完成 A群鏈球菌表面蛋白之 M protein與Opp 突變株。 利用野生株及突變株感染不同的細胞株A549, HEp-2,NIH3T3, MDCK, HaCaT及HMEC-1後, 進行吸附作用之分析。 結果顯示 Opp 與M protein 的突變株吸附到所有細胞株的能力都下降了50-95 %, 故推測 Opp 與 M protein在細菌的吸附作用中扮演著重要的角色。 當細菌含有M protein或Opp時, fibrinogen 與 fibronectin會促使其吸附到NIH3T3細胞的能力分別增加 2.85 及 2.14 倍; 第一型膠原蛋白(type I collagen) 與細菌在含有 Opp 存在下, 吸附到A549細胞的能力會增加 1.44 倍。 藉由一種opp lux 報導系統分析顯示, 當細菌含有 Opp 於10% CO2 , 其吸附到 A549 的能力增加 4.74倍, 而當培養於 20 µM Mg2+ 濃度時其吸附能力是下降 5 倍。此外, 細菌在40℃ 環境時其吸附能力也會增加, 而滲透壓及 pH等因子並不會影響其吸附能力。 用 pronase 先處理 A549 後會降低野生株吸附到 A549 的能力。 根據以上這些結果, 我們的結論是(i)A群鏈球菌之Opp具有吸附的功能, 在不同細胞株中其吸附的能力也不同; (ii)GAS吸附能力的多變性與不同的鏈球菌表面蛋白,細胞株及 ECM 有關; (iii)環境因子可影響 Opp 之吸附能力, 如 10% CO2及40℃ 能夠增加其吸附能力,而 20 µM Mg2+ 卻是抑制; (iv)蛋白質類的receptor有可能是具有傳達這樣的交互作用。
英文摘要   Streptococcus pyogenes (Group A streptococcus, GAS) is the causative agent of a wide spectrum of human diseases. The surface molecules of GAS are reported to interact with extracellular matrix (ECM) and play an important role in the initiation of infection. Oligopeptide permease (Opp) is a membrane-associated complex of five proteins (OppABCDE) belonging to the ABC-transporter family. In our lab, we have demonstrated that Opp plays an important role in the pathogenesis of GAS infection. The aims of this study were (i) to understand whether surface molecules of GAS had different adhesion ability in different cell lines; (ii) to understand how ECM interacted with surface molecules of GAS had any affects on adhesion; (iii) to understand how environmental signals affected on adhesion; (iv) to explore the potential receptor of Opp. Isogenic mutants of streptococcal surface proteins including M protein, and Opp have been constructed in our lab. The wild-type strain, A20, and its isogenic mutants infected with different cell lines included A549, HEp-2, NIH3T3, MDCK, HaCaT and HMEC-1 cells were used to analyze the adherence ability of A20 and its isogenic mutants. The adhesion ability of oppA and emm decreased 50-95% in all cell lines tested, suggesting Opp and M proteins may play important roles in bacterial adherence. The fibrinogen and the fibronectin enhanced streptococcal adhesion ability 2.85- and 2.14-fold, respectively, in NIH3T3 cells when M protein or OppA was present. However, the type I collagen enhanced 1.44-fold adhesion ability in A549 cells when OppA was present. By using a oppA lux reporter system, the adhesion ability increased 4.74-fold in A549 cells when Opp was present in 10% CO2 , but decreased 5-fold in 20 µM Mg2+, increased at 40℃ whereas no effects on osmolarity and pH were detected by plating count. The pronase treatment of A549 cells reduced the adhesion of the wild-type GAS. Based on these results, we conclude that (i) OppA is able to adhere to difference cell lines; (ii) the variation of adhesion ability of GAS is dependent on the different streptococcal surface proteins, cell types and presence of ECM ; (iii) the environmental factors such as 10% CO2 can increase adhesion ability when Opp is present but decrease at 20 µM Mg2+; (iv) the GAS-cell interaction is most likely to be mediated by a protein receptor.
論文目次 中文摘要..................................... i
英文摘要......................................iii
誌謝..........................................v
目錄..........................................vi
表及圖目錄....................................ix
符號及縮寫....................................x

緒論..........................................1

材料與方法....................................12
(一)實驗菌株及質體..........................12
(二)儀器與藥品..............................12
(三)實驗菌種培養及保存......................12
(四)細胞的培養與保存....................... 12
(A)A549、HEp-2及NIH3T3 cells 培養方式.......12
(B)HaCaT cells培養方式......................13
(C)HMEC-1 cells培養方式.....................13
(D)MDCK cells培養方式.......................13
(五)細胞計算方式........................... 14
(六)細菌DNA之抽取...........................14
(A)大腸桿菌質體DNA之抽取....................14
(B)化膿性鏈球菌染色體DNA之抽取..............15
(七)限制酶切割及DNA接合反應.................15
(八)勝任細胞(Competent cell)的製備........15
(九)轉型作用(Transformation)..............16
(十)聚合酶連鎖反應(Polymerase chain reaction,PCR).........................................16
(十一)洋菜膠體電泳..........................16
(十二)DNA片段之回收.........................17
(十三)電擊轉型作用(Electroporation).......17
(十四)mRNA之抽取............................17
(十五)RT-PCR cDNA之製備.....................18
(十六)南方墨漬雜交法(Southern blotting hybridization)...............................18
(A)探針(probe)之製作......................18
(B)染色體DNA之限制酶切割....................19
(C)DNA之轉漬(transfer)....................19
(D)雜交反應(hybridization)................19
(E)偵測作用(detection)....................19
(十七)生長曲線(Growth curve)的測定........20
(十八)細胞附著能力(Adhesion)..............20
(A)細胞株之吸附能力.........................20
(B)細胞外基質影響其吸附能力.................20
(C)環境因子影響其吸附能力...................20
(D)pronase前處理細胞後之吸附能力............21
(E)phospholipase D前處理細胞後之吸附能力....21
(十九)金莎染色(Giemsa Stain)..............21
(二十)偵測螢光方式(Luciferase assay)......21
(二十一)化膿性鏈球菌莢膜玻尿酸(Hyaluronic acid)含量之測定..............................22
(二十二)蛋白水解酶活性分析(Protease assay).......................................22

結果..........................................23
(一)探討Opp是否具有吸附作用以及吸附到不同細胞株能力..........................................23
(A)金沙染色(Giemsa stain).................23
(B)分析A20及突變株在不同細胞株之吸附能力....23
(二)構築Opp及M protein之雙突變株............24
(A)利用double crossover方式構築oppA基因突變株............................................24
(B)以電菌(electroporation)之方式將重組質體送入GAS.........................................25
(C)利用PCR與南方點墨法(Southern blot)確認oppA基因突變株....................................25(三)探討細胞外基質是否影響Opp 的吸附能力....26
(四)探討環境因子是否影響Opp 的吸附能力......26
(A)CO2是否影響Opp的吸附作用.................27
(B)鎂離子及鐵離子是否影響Opp的吸附能力......27
(C)溫度是否影響Opp的吸附能力................27
(D)滲透壓是否影響Opp的吸附能力..............28
(E)pH值是否影響Opp的吸附能力................28
(F)不同CO2環境下其生長曲線..................28
(五)探究Opp的接受器.........................28

討論..........................................30
(一)Opp具有吸附至不同細胞能力之探討.........30(二)細胞外基質影響Opp吸附能力之探討.........31
(三)環境因子影響Opp吸附能力之探討...........32
(四)Opp接受器之探討.........................33

參考文獻......................................35
圖表..........................................51
附錄..........................................75
自述..........................................88
參考文獻 Arciola, C. R., Campoccia, D., Gamberini, S., Baldassarri, L., and L. Montanaro. 2005. Prevalence of cna, fnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiol. Lett. 246: 81-86.

Beachey, E. H., and I. Ofek. 1976. Epithelial cell binding of group A streptococci by lipoteichoic acid on fimbriae denuded of M protein. J. Exp. Med. 143:759-771.

Berge, A., and U. Sjobring . 1993. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol. Chem. 268:25417-25424.

Bessen, D. E., and A. Kalia. 2002. Genomic localization of a T serotype locus to a recombinatorial zone encoding ectracellular matrix-binding proteins in Streptococcus pyogenes. Infect. Immun. 70: 1159-1167.

Betschel, S. D., Borgia, S. M., Barg, N. L., Low, D. E., and J. C. De Azavedo. 1998. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect. Immun. 66: 1671-1679.

Bisno, A. L., Brito, M. O., and C. M. Collins. 2003. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3: 191-200.

Burova, L. A., Nagornev, V. A., Pigarevsky, P. V., Gladilina, M. M., Gavrilova, E. A., Seliverstova, V. G., Totolian, A. A., Thern, A., and C. Schalen. 2005. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin G-binding surface proteins. APMIS. 113: 21-30.

Burova, L., Thern, A., Pigarevsky, P., Gladilina, M., Seliverstova, V., Gavrilova, E., Nagornev, V., Schalen, C., and A. Totolian. 2003. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit. APMIS. 111: 955-962.

Caparon, M. G., Geist, R. T., Perez-Casal, J., and J. R. Scott. 1992. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 174: 5693-5701.

Capecchi, B., Adu-Bobie, J., Di Marcello, F., Ciucchi, L., Masignani, V., Taddei, A., Rappuoli, R., Pizza, M., and B. Arico. 2005. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol. Microbiol.55: 687-598.

Carmi, O. A., Stewart, G. S., Ulitzur, S., and J. Kuhn. 1987. Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp. J. Bacteriol. 169: 2165-2170.

Chhatwal, G. S. 2002. Anchorless adhesions and invasions of Gram-positive bacteria: a new class of virulence factors. Trends. Microbiol. 10: 205-208.

Chhatwal, G. S., Lammler, C., and H. Blobel. 1985. Interaction of plasma protein with group A, B, C and G streptococci. Zentralbl. Bakteriol. Mikrobiol. Hyg. 259: 219-227.

Chhatwal, G. S., Valentin-Weigand, P., and K. N. Timmis. 1990. Bacterial infection of wounds: fbronectin-mediated adherence group A and C streptococci to fibrin thrombi in vitro. Infect. Immun. 58: 3015-3019.

Chiou, C. S., Liao, T. L., Wang, T. H., Chang, H. L., Liao, J. C., and C. C. Li. 2004. Epidemiology and molecular characterization of Streptococcus pyogenes recovered from scarlet fever patients in central Taiwan from 1996 to 1999. J. Clin. Microbiol. 42: 3998-4006.

Clarke, S. R., Wiltshire, M. D., and S. J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol. Microbiol. 51: 1509-1519.

Claverys, J. P., Grosiord, B., and G. Alloing. 2000. Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental condition? Res. Microbiol. 151: 457-463.

Cleary, P. P., Matsuka, Y. V., Huynh, T., Lam, H., and S. B. Olmsted. 2004 . Immunization with C5a peptidase from either group A or B streptococci enhances clearance of group A streptococci from intranasally infected mice. Vaccine.22: 4332-4341.

Collin, M., and A. Olsen. 2000. Generation of a mature streptococcal cysteine proteinase is dependent on cell wall-anchored M1 protein. Mol. Microbiol. 36: 1306-1318.

Courtney, H. S., Hasty, D. L., and J. B. Dale. 2002. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann. Med. 34: 77-87.

Courtney, H. S., von Hunolstein, C., Dale, J. B., Bronze, M. S., Beachey, E. H., and D. L. Hasty. 1992. Lipoteichoic acid and M protein:dual adhesions of group A streptococci. Mirob. Pathog. 12: 199-208.

Cue, D., Southern, S. O., Southern, P. J., Prabhakar, J., Smallheer, J. M., Mousa, S. A., and P. P. Cleary. 2000. A nonspeptide integrin antagonist can inhibit epithelial cell ingestion of Streptococcus pyogenes by blocking formation of integrin α5β1-fibronectin-M1 protein complexs. Proc. Natl. Acad. Sci. USA. 97: 2858-2863.

Cundell, D. R., Pearce, B. J., Sandros, J., Naughton, A. M., and H. R. Masure. 1995. Peptide permease from Streptococcus pneumoniae affect adherence to eukaryotic cell. Infect. Immun. 63: 2493-2498.

Cunningham, M. W. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13: 470-511.


Cut, D., Dombek, P., Lam, H., and P. Cleary. 1998. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect. Immun. 66: 4593-4601.

Cywes, C., Stamenkovic, I., and MR. Wessels. 2000. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J. Clin. Invest. 106: 995-1002.

Dale, J. B., Washburn, R. G., Marques, M. B., and M. R. Wessels. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. 1996. Infect Immun. 64:1495-1501.

Darmstadt, G., Mentele, L., Fleckman, P., and C. E. Rubens. 1999. Role of keratinocyte injury in adherence of Streptococcus pyogenes. Infect. Immun. 67: 6707-6709.

Dinkla, K., Rohde, M., Jansen, W. T., Carapetis, J. R., Chhatwal, G. S., and S. R.Talay. 2003. Streptococcus pyogenes recruits collagen via surface-bound fibronectin: a novel colonization and immune evasion mechanism. Mol. Microbiol.47:861-869.

Dinkla, K., Rohde, M., Jansen, W. T., Kaplan, E. L., Chhatwal, G. S., and S. R. Talay. 2003. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J. Clin. Invest. 111: 1905-1912.

Edwards, M. L., Fagan, P. K., Smith-Vaughan, H., Currie, B. J., and K. S. Sriprakash. 2003. Strains of Streptococcus pyogenes from severe invasive infections bind HEp2 and HaCaT cells more avidly than strains from uncomplicated infections. J. Clin. Microbiol. 41: 3936-3938.

Eichenbaum, Z., Green, B. D., and J. R. Scott. 1996. Iron starvation causes relase from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehydes -3- phosphate-dehydrogenase. Infect. Immun. 64:1956-1960.

Enright, M. C., Spratt, B. G., Kalia, A. J., Cross, H., and D. E. Bessen. 2001. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect. Immun. 69: 2416-2427.

Ensenberger, M. G., Annis, D. S., and D. F. Mosher. 2004. Actions of the functional upstream domain of protein F1 of Streptococcus pyogenes on the conformation of fibronectin. Biophys. Chem. 112: 201-207.

Esgleas, M., Lacouture, S., and M. Gottschalk. 2005. Streptococcus suis serotype 2 binding to extracellular matrix proteins. FEMS Microbiol. Lett. 244: 33-40.

Eyal, O., Jadoun, J., Bitler, A., Skutelski, E., and S. Sela. 2003. Role of M3 protein in the adherence and internalization of an invasive Streptococcus pyogenes strain by epithelial cells. FEMS Immunol. Med. Microbiol. 38: 205-213.

Fogg, G. C., and M. G. Caparon. 1997. Constitutive expression of fibronectin binding in Streptococcus pyogenes as a result of anaerobic activation of rofA. J. Bacteriol. 179: 6172-6180.

Frick, I. M., Akesson, P., Rasmussen, M., Schmidtchen, A., and L. Bjorck. 2003. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem. 278: 16561-16566.

Giannakis, E., Jokiranta, T. S., Ormsby, R. J., Duthy, T. G., Male, D. A., Christiansen, D., Fischetti, V. A., Bagley, C., Loveland, B. E., and D. L. Gordon. 2002. Identification of the streptococcal M protein binding site on membrane cofactor protein (CD46). J. Immunol. 168: 4585-4592.

Giordano, D., Giovanni, G., Giulia, L., Silvia, A., Marina, D. C., Ersilia, F., Debra, E. B., and B. Bernard. 2001. Group A streptococcal genotypes from pediatric throat isolates in Rome, Italy. J. Clin. Microbiol. 39: 1687-1690.

Goodfellow, A. M., Hibble, M., Talay, S. R., Kreikemeyer, B., Currie, B. J., Sriprakash, K. S., and G. S. Chhatwal. 2000. Distribution and antigenicity of fibronectin binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the northern territory, Australia. J. Clin. Microbiol. 38: 389-392.

Granger, D. L., Perfect, J. R., and D. T. Durack. 1985. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76: 508-516.

Gryllos, I., Levin, J. C., and M. R. Wessels. 2003. The CsrR/ CsrS two-component system of group A streptococcus responds to environmental Mg2+. Proc. Natl. Acad. Sci. USA. 100: 4227-4232.

Hanski, E., and M. Caparon. 1992. Protein F, a fibronectin binding protein, is an adhesins of the group A streptococcus (Streptococcus pyogenes). Proc. Natl. Acad. Sci. USA. 89: 6172-6176.

Hasty, D. L., Beachey, E. H., Courtney, H. S., and W. A. Simpson. 1989. Interaction between fibronectin and bacteria. In: Carsons S, editor. Fibronectin in health and disease. Boca Raton, Fl. CRC press Inc. 89-112.


Holm, S. E., Norrby, A., Bergholm, A. M., and M. Norgren. 1992. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166:31-37.

Hoe, N. P., Ireland, R. M., DeLeo, F. R., Gowen, B. B., Dorward, D. W., Voyich, J. M., Liu, M., Burns, E. H. Jr., Culnan, D. M., Bretscher, A., and J. M. Musser. 2002. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc. Natl. Acad. Sci. USA. 99: 7646-7651.

Horstman, R. D., Sieversten, H. J., Knnobloch, J., and J. R. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein H. Proc. Natl. Acad. Sci. USA. 85:1657-1661.

Hiles, I. D., Gallagher, M. P., Jamieson, D. J., and C. F. Higgins. 1987. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J. Mol. Biol. 1987 195:125-142.

Hytonen, J., Haataja, S., Gerlach, D., Podbielski, A., and J. Finne. 2001. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Mol. Microbiol. 39: 512-519.

Ish-Horowicz, D., and J. F. Burke. 1981. Rapid and efficient cosmid cloning.
Nucleic acid Res. 9: 2989-2998.

Jadoun, J., Ozeri, V., Burstein, E., Skutelsky, E., Hanski, E., and S. Sela. 1998. protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J. Infect. Dis. 178: 147-158.

Jaffe, J., Natanson-Yaron, S., Caparon, M. G., and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21: 373-384.

Jeffery, C. J. 2003. Moonlighting proteins: old proteins learning new tricks. Trends. Genet. 19: 415-417.

Jeng, A., Sakota, V., Li, Z., Datta, V., Beall, B., and V. Nizet. 2003. Molecular genetic analysis of a group A Streptococcus operon encoding serum opacity factor and a novel fibronectin-binding protein, SfbX. J. Bacteriol. 185: 1208-1217.

Jesper, P. P., Margits, S. K., Jens, C. M., Helga, S., and C. S. Henrik. 2003. Community outbreak of perianal group A streptococcal infection in Denmark. Pediatr. Infect. Dis. J. 22: 105-109.

Ji, Y., McLandsborough, A. K., and P. P. Cleary. 1996. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510.

Kamezawa, Y. T., Nakahara, T., Nakano, S., Abe, Y., Nozaki-Renard, J., and T. Isono. 1997. Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect . Immun. 65: 3828-3833.

Kinney, D. M., and M. G. Bramucci, 1981. Analysis of Bacillus subtilis sporulation with spore-converting bacteriophage PMB12. J. Bacteriol. 145:1281-1285.

Kintarak, S., Whawell, S. A., Speight, P. M., Packer, S., and S. P. Nair. 2004 Internalization of Staphylococcus aureus by human keratinocytes. Infect. Immun. 72: 5668-5675.

Kreikemeyer, B., Beckert, S., Braun-Kiewnick, A., and A. Podbielski. 2002. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology. 148: 1501-1511.

Kreikemeyer, B., Oehmcke, S., Nakata, M., Hoffrogge, R., and A. Podbielski . 2004. Streptococcus pyogenes fibronectin-binding protein F2: expression profile, binding characteristics, and impact on eukaryotic cell interactions. J. Biol. Chem. 279: 15850-15859.

Kreikemeyer, B., Talay, S. R., Kaufhold, A., Timmis, K. N., and G. S. Chhatwal. 1995. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol. Microbiol. 17: 137-145.

Lahteenmaki, K., Kuusela, P., and T. K. Korhonen. 2001. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 25: 531-552.

Lee, E. M., Ahn, S. H., Park, J. H., Lee, J. H., Ahn, S. C., and I. S. Kong .
2004. Identification of oligopeptide permease (opp) gene cluster in Vibrio fluvialis and characterization of biofilm production by oppA knockout mutation. FEMS Microbiol. Lett. 240:21-30.

Lei, B., DeLeo, F. R., Hoe, N. P., Graham, M. R., Mackie, S. M., Cole, R. L., Liu, M., Hill, H. R., Low, D. E., Federle, M. J., Scott, J. R., and J. M. Musser. 2001. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat. Med. 7: 1298-1305.

Levdikov, V. M, Blagova, E. V., Brannigan, J. A., Wright, L., Vagin, A. A., and A. J. Wilkinson. 2005. The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide. J. Mol. Biol. 345: 879-892.

Limbago, B., Penumalli, V., Weinrick, B., and J. R. Scott. 2000. Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect. Immun. 68: 6384-6390.

Lin, T.P., Chen, C. L., Chang, L. K., Tschen, J. S., and S. T. Liu. 1999. Functional and transcriptional analyses of a Fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol. 181: 5060-5067.

Lottenberg, R., Broder, C. C., Boyle, M. D. P., Kain, S. J., Schroeder, B. L., and R. Curtiss. 1992. Cloning, sequence analysis and expression in
Escherichia coli of streptococcal plasmin receptor. J. Bacteriol. 174: 5204-5210.

Madeleine, W., and M. W. Cunningham. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13: 470-511.

McArthur, J., Medina, E., Mueller, A., Chin, J., Currie, B. J., Sriprakash, K. S., Talay, S. R., Chhatwal, G. S., and M. J. Walker. 2004. Intranasal vaccination with streptococcal fibronectin binding protein Sfb1 fails to prevent growth and dissemination of Streptococcus pyogenes in a murine skin infection model. Infect. Immun. 72: 7342-7345.

McIver, K. S., Heath, A. S., and J. R. Scott. 1995. Regulation of virulence by environmental signals in group A streptococci: influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 63: 4540-4542.

Molinari, G., and G. S. Chhatwal. 1999. Role played by the fibronectin-binding protein SfbI (Protein F1) of Streptococcus pyogenes in bacterial internalization by epithelial cells. J. Infect. Dis. 179: 1049-1050.

Molinari, G., Talay, S. R., Valentin-Weigand, P., Rohde, M., and G. S. Chhatwal. 1997. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65: 1357-1363.

Molinari, G., Talay, S. R., Valentin-Weigand, P., Rohde, M., and G. S. Chhatwal. 1997. The fibronectin-binding protein of Streptococcus pyogenes, Sfb1, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65: 1357-1363.

Morrison, D. A. 1979. Transformation and preservation of competent bacteria cells by freezing. Meth. Enzy. 68: 326-331.

Myhre, E. B., and P. Kuusela. 1983. Binding of fibronectin to the surface of group A, C, and G streptococci. Infect. Immun. 40: 29-34.

Nakagawa, I., Nakata, M., Kawabata, S., and S. Hamada. 2001. Cytochrome c-mediated caspase-9 activation trigger apoptosis in Streptococcus pyogenes-infected epithelial cells. Cell Microbiol. 3: 395-405.

Natanson, S., Sela, S., Moses, A. E., Musser, J. M., Caparon, M. G., and E. Hanski. 1995. Distribution of fibronectin-binding proteins among group A streptococci of different M types. J. Infect. Dis. 171: 871-878.

Navarre, W. W., and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174-229.

Nordstrand, A., Norgren, M. and S. E. Holm. 1999. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. Scand. J. Infect. Dis. 31:523-537.

Nyberg, P., Sakai, T., Cho, K. H., Caparon, M. G., Fassler, R., and L. Bjorck. 2004. Interactions with fibronectin attenuate the virulence of Streptococcus pyogenes. EMBO. J. 23: 2166-2174.

Okada, N., Liszewski, MK., Atkinson, JP., M. Caparon. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci .USA. 92: 2489-2493.

Ozeri, V., Rosenshine, I., Mosher, D. F., Fassler, R., and E. Hanski. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30: 625-637.

Ohara-Nemoto, Y., M. Sasaki, M. Kaneko, T. Nemoto, and M. Ota. 1994.
Cysteine protease activity of streptococcal pyogenic extoxin B. Can. J. Microbiol. 40: 930-936.

Ozeri, V., Tovi, A., Burstein, I., Natanson-Yaron, S., Caparon, M. G., Yamada, K. M., Akiyama, S. K., Vlodavsky, I., and E. A. Hanski. 1996. Two-domain mechanism for group A streptococcal adherence through protein F to the extracellular matrix. EMBO. J. 15: 989-998.

Pancholi, V., Fontan, P., and H. Jin. 2003. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb. Pathog. 35: 293-303.

Patti, J. M., Allen, B. L., McGavin, M. J., and M. Hook. 1994. MSCRAMM-mediated adherence of microorganisms to host tissue. Annu. Rev. Microbiol. 48: 585-617.

Payne, J. W. and M. W. Smith. 1994. Peptide transport by microorganisms. Adv. Microb. Physiol, 36: 1-80.

Perego, M., Higgins, C. F., Pearce, S. R., Gallagher, M. P., and Hoch. J. A. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173–185.

Perez-Casal, J., Okada, N., Caparon, M. G., and J. R. Scott. 1995. Role of the conserved C repeat region of the M protein of Streptococcus pyogenes. Mol. Microbiol. 15: 907-916.

Podbielski, A., Pohl, B., Woischnik, M., Korner, C., Schmidt, K. H., Rozdzinski, E., B. A. Leonard. 1996. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Mol. Microbiol. 21:1087-1099.

Podbielski, A., Woischnik, M., Kreikemeyer, B., Bettenbrock, K., and B. A. Buttaro. 1999. Cysteine protease SpeB expression in group A streptococci is influenced by the nutritional environment but SpeB does not contribute to obtaining essential nutrients. Med. Microbiol. Immunol. 188: 99-109.

Podbielski, A., Beckert, S., Schattke, R., Leithauser, F., Lestin, F., Gossler, B., and B. Kreikemeyer. 2003. Epidemiology and virulence gene expression of intracellular group A streptococci in tonsils of recurrently infected adults. Int. J. Med. Microbiol. 293:179-190.

Pracht, D., Elm, C., Gerber, J., Bergmann, S., Rohde, M., Seiler, M., Kim, K. S., Jenkinson, H. F., Nau, R., and S. Hammerschmidt. 2005. PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect. Immun.73: 2680-2690.

Purushothaman, S. S., Park, H. S., and P. P. Cleary. 2004. Promotion of fibronectin independent invasion by C5a peptidase into epithelial cells in group A Streptococcus. Indian. J. Med. Res. 119: 44-47.

Purushothaman, S. S., Wang, B., and P. P. Cleary. 2003. M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect. Immun. 71: 5823-5830.

Raeder, R., and M. D. Boyle. 1991. Detection of rheumatoid-like factors in serum of chickens immunized with bacterial immunoglobulin binding proteins. J. Immunol. Methods. 138: 201-209.

Ramachandran, V., McArthur, J. D., Behm, C. E., Gutzeit, C., Dowton, M., Fagan, P. K., Towers, R., Currie, B., Sriprakash, K. S., and M. J Walker. 2004. Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes. J. Bacteriol. 186:7601-7609.

Rasmussen, M., Eden, A., and L. Bjorck. 2000. SclA, a novel collagen-like surface protein of Streptococcus pyogenes. Infect. Immun. 68 :6370-6377.

Reed, K. C., and D. A. Mann.1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acid. Res. 13: 7207-7221.

Rezcallah, M. S., Boyle, M. D., and D. D. Sledjeski. 2004. Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity. Microbiology. 150: 365-371.

Roderick, M., and H. F. Jenkinson. 1998. Altered adherence properties of a Streptococcus gordonii hppA (oligopeptide permease) mutant result from transcriptional effects on CshA adhesion gene expression. Microbiology. 144: 127-136.

Rudner, D. Z. LeDeaux, J. R., Ireton, K., and A. D. Grossman. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1388–1398.

Sambrook, J., Firtsch, E. F., and T. Maniatis. 1989. Molecular cloning: A laboratory manual. 6th ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, N. Y.

Schmidt, K. H., Mann, K., Cooney, J., and W. Kohler. 1993. Multiple binding of type 3 streptococcal M protein to fibrinogen, albumin, and fibrornectin. FEMS Immun. Med. Microbiol. 7: 135-144.

Schrager, H. M., Alberti, S., Cywes, C., Dougherty, G. J., and M. R. Wessels. 1998. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Invest. 101:1708-1716.

Schwarz-Linek, U., Hook, M., and J. R. Potts. 2004. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol. Microbiol. 52: 631-641.

Simon, D., and J. J. Ferretti. 1991. Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA.. FEMS Microbio. Lett. 82: 219-224.

Svensson, M. D., Sjobring, U., Luo, F., and D. E. Bessen. 2002. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiology. 148:3933-3945.

Simpson, W. A., and E. H. Beachey. 1983. Adherence of group A streptococci to fibronectin on oral epithelial cells. Infect. Immun. 39: 275-279.

Sirard, J. C., Mock, M. and A. Fouet. 1994. The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J. Bacteriol. 176: 5188–5192.

Smoot, L. M., Smoot, J. C., Graham, M. R., Somerville, G. A., Sturdevant, D. E, Migliaccio, C. A., Sylva, G. L., and J. M. Musser. 2001. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc. Natl. Acad. Sci. USA. 98: 10416-10421.

Sun, H., Ringdahl, U., Homeister, J. W., Fay, W. P., Engleberg, N. C., Yang, A. Y., Rozek, L. S., Wang, X., Sjobring, U., and D. Ginsburg. 2004. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science. 305: 1283-1286.

Svensson, M. D., Sjobring, U., Luo, F., and D. E. Bessen. 2002. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiology. 148: 3933-3945.

Switalski, L. M., Ljungh, A., Ryden, C., Rubin, K., Hook, M., and T. Wadstrom. 1982. Binding of fibronectin to the surface of group A, C, and G streptococci isolated from human infection. Eur. J. Clin. Microbiol. 1: 381-387.

Talay, S. R., Valentin-Weigand, P., Jerlstrom, P. G., Timmis, K. N., and G. S. Chhatwal. 1992. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cell. Infect. Immun. 60: 3837-3844.

Tamura, G. S., Kuypers, J. M., Smith, S., Raff, H., and C. E. Rubens . 1994. Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun. 62: 2450-2458.

Tomita, H., and Y. Ike. 2004. Tissue-specific adherent Enterococcus faecalis strains that show highly efficient adhesion to human bladder carcinoma T24 cells also adhere to extracellular matrix proteins. Infect. Immun. 72: 5877-5885.

Toyosaki, T., Yoshioka, T., Tsuruta, Y., Yutsudo, T., Iwasaki, M., and R. Suzuki. 1996. Definition of the mitogenic factor (MF) as a novel streptococcal superantigen that is different from streptococcal pyogenic A, B, and C. Eur. J. Immunol. 26: 2693-2701.

Tsai, P. J., Kuo, C. F., Lin, K. Y., Lin, Y. S., Lei, H. Y., Chen, F. F., Wang, J. R., and J. J Wu. 1998. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66:1460-1466.

Valentin-Weigand, P., Talay, S. R., Kaufhold, A., Timmis, K. N., and G. S. Chhat-wal. 1994. The fibronectin binding domain of the Sfb protein adhesin of Streptococcus pyogenes occurs in many group A streptococci and does not cross-react with heart myosin. Microb. Pathog. 17: 111-120.

von Pawel-Rammingen, U., and L. Bjorck. 2003. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6: 50-55.

von Pawel-Rammingen, U., Johansson, B. P., and L. Bjorck. 2002. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO. J. 21: 1607-1615.

Wang, C. H., Lin, C. Y., Luo, Y. H., Tsai, P. J., Lin, Y. S., Lin, M. T., Chuang, W. J., Liu, C. C., and J. J. Wu. 2005. Effects of oligopeptide permease in group A streptococcal infection. Infect. Immun. 73: 2881-2890.

Wang, J. R., and M.W. Stinson. 1994. M protein mediates streptococcal adhesion to HEp-2 cells. Infect. Immun. 62: 442-448.

Wang, X. G., Lin, B., Kidder, J. M., Telford, S., and L.T. Hu. Effects of environmental changes on expression of the oligopeptide permease (opp) genes of Borrelia burgdorferi. J. Bacteriol. 2002.184:6198-6206.

Wenig, K., Chatwell, L., von Pawel-Rammingen, U., Bjorck, L., Huber, R., and P. Sondermann. 2004. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc. Natl. Acad. Sci. USA. 101: 17371-17376.

Winram, S. B., and R. Lottenberg. 1996. The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehydes-3-phosphate dehydrogenase. Microbiology. 142: 2311-2320.

Winters, B. D., Ramasubbu, N., and M. W. Stinson. 1993. Isolation and characterization of a Streptococcus pyogenes protein that binds to basal laminae of human cardiac muscle. Infect. Immun. 61: 3259-3264.

Yabuuchi, E., Ikedo, M., and T. Ezaki. 1986. .Invasiveness of Salmonella typhi strains in HeLa S3 monolayer cells. Microbiol. Immunol.30: 1213-1224.

Yan, J. J., Liu, C. C., Ko, W. C., Hsu, S. Y., Wu, H. M., Lin, Y. S., Lin, M.T., Chuang, W. J., and J. J. Wu. 2003. Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J. Clin. Microbiol. 41: 4858-4861.

Zimmerlein, B., Park, H. S., Li, S., Podbielski, A., and P. P. Cleary. 2005. The M protein is dispensable for maturation of streptococcal cysteine protease SpeB. Infect. Immun. 73: 859-864.

行政院衛生署疫情報導1996. 噬肉菌-A群鏈球菌感染性壞疽-在台灣之現況分析 12: 201-211.

鄒志成 2004. Effect of the dacA gene in Streptococcus pyogenes infection. 國立成功大學微生物及免疫學研究所碩士論文  

王志宏 2005. Roles of Oligopeptide permease in group A streptococcal infection. 國立成功大學基礎醫學研究所博士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw