進階搜尋


 
系統識別號 U0026-0812200911373283
論文名稱(中文) 平板多層翼微飛行器之機翼最佳交錯配置實驗研究
論文名稱(英文) Experimental Study of Optimal Staggered Configuration Aerodynamics of Flat-plate Cascade-wing Micro Aerial Vehicle
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 93
學期 2
出版年 94
研究生(中文) 高鴻
研究生(英文) Hung Kao
電子信箱 kao.hon@msa.hinet.net
學號 p4792108
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 口試委員-潘永堅
指導教授-蕭飛賓
口試委員-江志煌
中文關鍵字 低雷諾數  多層翼  微飛行器 
英文關鍵字 Low Reynolds number  Cascade-wing  Micro Aerial Vehicle 
學科別分類
中文摘要   本論文主要利用風洞實驗方法,以矩型平板機翼重疊交錯配置成多層翼微飛行器(MAV)模型,探討其在低雷諾數下的空氣動力特性,及機翼最佳交錯配置方式。選用之參考面積為多層翼之翼面積總合,共製作十六組不同重疊比及間距比之平板多層翼模型,以及一組展弦比AR=1.6之平板單翼模型,於低雷諾數下測量升力及阻力值。為了進一步了解多層翼間的流場結構,也利用低速煙洞觀察多層翼於低雷諾數下之二維流場現象。實驗結果顯示多層翼模型之失速攻角均高於20度,最大升力係數也高於相同翼面積之單翼,且在失速攻角前後之升力變化緩和。根據最大升阻比之結果,可知多層翼在低攻角範圍之性能並不會優於單翼,但適當的翼面配置仍可使其性能與單翼相當。由二維低速煙洞實驗觀察平板多層翼之二維流場結構,可以了解多層翼具有高失速攻角的原因。當攻角較大,上層機翼上表面氣流已嚴重分離時,仍可維持下層機翼間之氣流沿著翼表面流動,因此而能夠持續產生升力。歸納實驗之結果,顯示重疊比對於高攻角升力之提升有較為直接的關聯。而最佳的多層翼交錯配置參數值應為重疊比O=0 、間距比G=0.48,可以具有與單翼相當之低攻角性能,且具有較佳的高攻角性能。
英文摘要   This thesis is intended to investigate the aerodynamic characteristics of the flat-plate cascade-wing Micro Aerial Vehicle (MAV) at low Reynolds number by wind-tunnel testing and to determine the optimal staggered configuration of the wings for the MAV. There were 16 cascade-wing models of flat-plate airfoil with different overlap ratios and gap ratios along with a monoplane of AR=1.6 tested at the Reynolds number of 8.8×104 for comparison. The lift and drag forces were measured and normalized based on the total area of the cascade wings. In order to understand the flow structure behavior around the cascade wings, the flow visualization was performed as well in a smoke tunnel. Results indicate that the stall angles of attack (AOA) for all the cascade-wing models tested were all exceeding 20 degrees and the corresponding maximum lift coefficients were larger than that of the monoplane model with the same wing area. The values of lift coefficients vary mildly near the stall angles. According to the lift-to-drag ratio calculation, the performance of cascade-wing models is usually inferior to the monoplane, but it may be very close when the arrangements of cascade wings are adequate. It was observed in flow visualization that the flow can be attached to the surfaces of lower wing when the flow had separated from the upper wing at high AOA; hence the cascade wing can maintain its lift force at even higher AOA. It is induced that the overlap ratio has much influence on the lift at high AOA. The optimum values of configuration parameters are overlap ratio O=0 and gap ratio G=0.48.
論文目次 中文摘要......................................................................................................................i
英文摘要.....................................................................................................................ii
誌謝............................................................................................................................iii
目錄............................................................................................................................iv
表目錄........................................................................................................................vi
圖目錄.......................................................................................................................vii
符號說明...................................................................................................................xv

第一章 前言與緖論.................................................................................................1
    1.1 微飛行器(Micro Aerial Vehicles)的發展背景...................................1
    1.2 微飛行器的氣動力問題....................................................................2
    1.3 低雷諾數............................................................................................3
    1.4 微飛行器的構型發展........................................................................4
    1.5 多層翼重疊交錯構型微飛行器........................................................5
    1.6 研究動機與目標................................................................................6

第二章 實驗參數.....................................................................................................8
    2.1 機翼交錯配置參數............................................................................8
    2.2 參考面積............................................................................................8
    2.3 其它無因次化參數............................................................................9

第三章 實驗設備與程序.......................................................................................10
    3.1 實驗設備與儀器..............................................................................10
      3.1.1 低速開放式風洞...................................................................10
      3.1.2 三力平衡儀...........................................................................10
      3.1.3 皮托管與壓力轉換器...........................................................10
      3.1.4 類比數位 A/D 變頻器...........................................................11
      3.1.5 數位錄影機和照像機...........................................................11
      3.1.6 煙霧風洞...............................................................................11
    3.2 實驗模型..........................................................................................12
    3.3 實驗步驟..........................................................................................13

第四章 結果與討論...............................................................................................15
    4.1 基本氣動力特性..............................................................................15
    4.2 多層翼交錯配置參數對最大升力係數與失速攻角之影響比較..16
    4.3 多層翼交錯配置參數對升阻比特性之影響比較..........................17
    4.4 多層翼交錯配置參數對升力係數曲線斜率之影響比較..............18
    4.5 多層機翼交錯配置參數之比較選用..............................................18
    4.6 平板多層翼之二維流場結構觀
察..................................................19

第五章 結論...........................................................................................................20

參考文獻...................................................................................................................22
表格區.......................................................................................................................25
圖區...........................................................................................................................27
自述...........................................................................................................................79
參考文獻 [1] DARPA, Defense Advanced Research Project Agency, http://www.darpa.mil/
[2] ISSMO, The International Society of Structure and Multidisciplinary Optimization, http://www.aero.ufl.edu/~issmo/
[3] McMasters, J.H. and Henderson, M.L. , “Low Speed Single Element Airfoil Synthesis,” Tech. Soaring, Vol.2, No.2, 1980, pp.1-21.
[4] O’Meara, M.M. and Mueller, T.J., “Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers,” AIAA Journal, Vol.25, No.8, Aug.1987.
[5] Althaus, D., “Recent Wind Tunnel Experiments at Low Reynolds Numbers,” Proceedings of the Conference on Aerodynamics at Low Reynolds Numbers, The Royal Aeronautical Society, Vol.2, Paper 18, 15th-18th Oct.1986.
[6] Marchman, J.F., “Aerodynamic Testing at Low Reynolds Numbers, ” Journal of Aircraft, Vol. 24, No. 2, Feb.1987.
[7] Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” Journal of Aircraft, Vol.22, Sept. 1985, pp.763-770.
[8] Martin Simon, “Model Aircraft Aerodynamics,“ Argus Books Limited. 1985.
[9] Schmitz, F. W., “The Aerodynamics of small Reynolds Number, ” NASA TM-75816, June.1980.
[10] Lissaman, P. B. S., “Low Reynolds Number Airfoils, ” Ann. Rev. of Fluid Mech., pp. 223,1983.
[11] 楊明浩, “固定翼微型無人載具設計與空氣動力性能分析,”國立成功大學航空太空研究所碩士論文, 2001年6月。
[12] 張嘉原, “有限翼展在低雷諾數下之氣動力研究,”國立成功大學航空太空研究所碩士論文, 2002年6月。
[13] 肖永利,張琛, “微飛行器研究現狀與關鍵技術,”宇航學報,第22卷,第5期,2000年9月。
[14] Pornisn-strink, T. N. , Lee, S. W. , Nessef, H., Grasmeyer, J. , Tai, Y.C., Ho, C.M. and Keennon, M.T. , “Mens Wing Technology for A Battery-Powered Ornithopter, ” Thirteenth IEEE International Conference On Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 23-27.
[15] Grasmeyer, J. M. and Keennon, M.T. , “Development of the Black Widow Micro Air Vehicle,” AIAA-2001-0127, Aerospace Sciences Meeting, Reno, NV, Jan 2000.
[16] Morris, S., Holden, M., “Design of Micro Air Vehicles and Flight Test Validation,” Conference on Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers. Notre Dame University, Indiana, 5-7 June 2000.
[17] Mechanical Engineering Magazine, http://www.memagazine.org/
[18] Aviation Week, http://www.aviationnow.com/
[19] 潘永堅,徐明生,陳唐徵指導, “固定翼小型飛機(MAV)之設計製作,” 空軍航空技術學院2002年航太科技教育改進計畫航太專題實作競賽作品成果報告書, 2002年。
[20] 潘永堅,陳唐徵, “階梯式機翼之模型飛機新式樣專利圖說,” 2002年。
[21] 鈴木真二 著, 蕭志強 譯, “萊特兄弟與飛行,” 2004年。
[22] Taylor, J.W.R., “Combat Aircraft of the world from 1909 to the present,” 1971.
[23] 劉益仲, “低雷諾數下三維薄翼之低展弦比效應之研究,” 國立成功大學航空太空研究所碩士論文, 2005年7月。.
[24] Hsu, U.K., Tai, C.H., Payne, U.J., Ku, C.Y. , “The Unsteady Flowfield of a NACA0012 Multi-wing at Low Reynolds Number,” Journal of Air Force Institute of Technology ,Vol.3, No.1, pp.79-89, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw