進階搜尋


 
系統識別號 U0026-0812200911365810
論文名稱(中文) 多孔噴頭霧化技術最佳化研究
論文名稱(英文) Optimization on Multiple-Orifice Atomization Technique
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 93
學期 2
出版年 94
研究生(中文) 郭憲岑
研究生(英文) Hsien-Tsen Kuo
電子信箱 cash.kuo2@msa.hinet.net
學號 p4791107
學位類別 碩士
語文別 中文
論文頁數 132頁
口試委員 指導教授-王覺寬
口試委員-張克勤
口試委員-袁曉峰
中文關鍵字 田口是實驗計畫法  內混式  多孔噴頭  奇點  霧化器 
英文關鍵字 atomizer  singularity  Taguchi method  internal-mixing  multiple-orifice 
學科別分類
中文摘要 摘要
  本研究探討多孔噴頭霧化技術之最佳化設計,採用新型設計之內混式多孔奇點噴頭霧化器,以田口式實驗計畫法,應用在參數設計階段,掌握變化之機制,得到霧化器最佳化之組合條件,預期達成多孔奇點噴頭內混式霧化器產生的噴霧粒徑品質望小特性(SMD≦10μm)並能提升獲得霧化技術資料之效率。

  本研究根據田口式L18(21x37)實驗計畫法,採取8個設計參數進行實驗,包括:(A)噴頭奇點出口孔孔徑為Ø0.4mm及Ø0.8mm;(B)噴頭孔數為5孔、11孔及17孔(C)混合腔入水孔數為1孔、2孔及4孔(D)混合腔入水孔徑為Ø0.4mm、Ø0.8mm及Ø1.2mm(E)漩渦器位置為未裝、上方、下方(F)液體介質為水、95%酒精、50%酒精(G)液體壓力為3kg/cm² 、4 kg/cm² 及5 kg/cm²(H)氣體供應壓力為3 kg/cm² 、4 kg/cm² 及5 kg/cm²等。對照田口式直交表L18(21x37)組合方式實驗,來驗證此種雙流體奇點多孔噴頭內混式霧化器之設計理念及其特性。本實驗霧化特性係利用INSITEC RT-sizer粒徑分析儀做即時量測。

  實驗結果顯示,最佳組合為A2 B3 C1 D3 E3 F2 G1 H3(噴頭孔孔徑Ø0.8mm、孔數17孔、入水孔數為1孔、入水孔徑為Ø1.2mm、漩渦器位置裝於下方、使用95%酒精、液體壓力=3 kg/cm²及氣體壓力=5 kg/cm²),在以田口式實驗計畫法八項要因所獲得最佳化組合下,其霧化平均粒徑為9.16μm,達成所設定之品質目標.
英文摘要 Abstract
 This research investigates the optimized performance of a 60 degrees internal-mixing singularity atomizer with multiple-orifice. The design parameters were based on Taguchi’s method of “the smaller the better” to simulate the best combination of all parameters with the experimental device. Design parameters of the atomization device are as follows:
A.Diameter of orifice: Ø0.4 mm and Ø0.8 mm.
B.Number of orifice on nozzle: 5, 11, and 17.
C.Number of water inlet: 1, 2, and 4.
D.Diameter of water inlet: Ø0.4 mm, Ø0.8 mm, and Ø1.2 mm.
E.Swirler position: no-installed, high-position and low-position.
F.Medium: pure water, 95% alcohol liquid, and 50% alcohol liquid.
G.Liquid pressure:3kg/cm²,4kg/cm², and5kg/cm².
H.Air supply pressure:3kg/cm²,4kg/cm², and5kg/cm².
Experiments are performed according to Taguchi’s orthogonal arrays with L18 (21 × 37) combinations for testing the designed concept and characteristics of the internal-mixing singularity atomizer with multiple-orifice. The INSITEC RT-sizer is used for real-time measurement of the particle size.

 Experimental results show that the optimal combination of the parameters are A2, B3, C1, D3, E3, F2, G1, and H3 (i.e., singularity exit, Ø0.8mm; Number of orifices, 17; Number of water inlet, 1; Diameter of water inlet, Ø1.2mm; Swirler position, low position, Medium, 95% alcohol medium; liquid pressure,3kg/cm²; and air pressure,5kg/cm²). The average diameter of the spray is 9.16μm based on the optimal combination of parameters which reaches the goal of quality required (i.e., less than 10μm).

 The design concept of the singularity multiple-orifice atomizer developed from this experiment can be adapted to control the atomization performance and the production rate of the spray. The technique to produce the spray with micron and sub-micron particles is applicable to those areas such as humidification in the air conditioning of electronic plants, exhaust treatment of industrial plants, processing of precipitating dust and de-humidification, and atomizing coated membrane, etc. Therefore, this technology still has plenty of room to develop for many engineering applications in the future.
論文目次 摘要
ABSTRACT
誌謝
目錄
表目錄
圖目錄
符號說明
第一章 緒論 1
1-1 簡介 1
1-2 文獻回顧 2
1-2-1 田口式實驗計畫法(Taguchi Method) 2
1-2-2 霧化之原理 4
1-2-3 液體碎化過程 6
1-3 雙流體霧化器 9
1-3-1 渦漩式霧化器 12
1-3-2 奇點式噴頭 15
1-4 研究動機與目的 16
第二章 實驗設備及儀器 31
2-1 噴霧特性量測實驗設備 31
2-1-1 噴嘴性能測試台架 31
2-1-2 液體供應系統 31
2-1-3 噴嘴所需高壓氣體供應系統 32
2-1-4 抽氣系統 33
2-1-5 霧化裝置 33
2-2 實驗量測儀器 34
2-2-1 粒徑量測分析裝置 34
2-2-2 RT-Sizer粒徑分析儀校正 36
2-3 量測參數說明 36
第三章 實驗方法及步驟 50
3-1 實驗方法 50
3-1-1 實驗規畫 50
3-1-2 霧化器靜態參數設計 52
3-1-3 損失函數: 53
3-1-4 實驗因素與水準之選定 57
3-1-5 直交表 (Orthogonal Array) 運用 57
3-1-6 信號雜訊比 ( S/N比)計算 58
3-1-7 變異數(ANOVA)分析 60
3-1-8 驗證最佳組合水準 62
3-2 實驗步驟: 62
3-2-1 實驗室安全 62
3-2-2 氣體質量流率測量 63
3-2-3 液體質量流率測量 63
3-2-4 視流場觀察 64
3-2-5 INSITEC RT-Sizer 粒徑分析儀的量測 64
3-3 數據分析 65
3-4 實驗誤差 65
第四章 實驗結果與討論 75
4-1 田口式實驗計畫法 75
4-1-1 實驗數據統計 76
4-1-2 田口方法資料分析 79
4-1-3 變異數分析(ANOVA) 84
4-2 設計理念及技巧 86
4-2-1 設計理念 86
4-2-2 噴嘴設計的技巧 89
4-2-3 多孔奇點設計對霧化特性之影響 92
第五章 結論 123
參考文獻
參考文獻 參考文獻
1.鄭燕琴 田口式品質工程技術理論與實務 中華民國品質學會發行 1993
2.廖世謨 田口品質工程講義,國立高雄應用科技大學,高雄,2000 年
3.吳祥輝 應用模糊田口方法於架空式起重機桁架穩健多目標最佳化設計”之研究 ,國立高雄第一科技大學碩士論文,2003
4.鍾清章,“品質工程(田口方法)”,中華民國品質學會發行,1993
5.Diane et. al,“The Taguchi approach to parameter design”,1987
6.張季娜等, 田口式品質工程導論 中華民國品質學會發行 1989
7.李輝煌,“田口方法品質設計的原理與實驗”,高立圖書,2000
8.曾彥羲 “田口方法應用於高速CNC 銑削加工製程之最佳參數設計”,國立高雄第一科技大學碩士論文,2003
9.賴等參”內混式噴嘴金屬粉末噴霧製程最佳化研究”,國立成功大學研究所碩士論文,2004
10.A.H. Lefebvre, “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983
11.A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
12.R. A., Jr. Castleman, “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
13.B. E. Stapper, W. A. Sowa and G. S. Samuelsen, ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
14.N. Dombrowski and W. R. Johns, “The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
15.C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream”, International Journal of Multiphase Flow 26(2000) 229-244.
16.R. P. Fraser, ”Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
17.H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982
18.R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International)on Combustion, Rein-hold, New York, pp.687-701, 1957.
19.G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973
20.Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.7901/2-0, 1979
21.Lefebvre, A. H., “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989
22.許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
23.高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003
24.A. A. Rizkalla and A. H. Lefebvre, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April 1975.
25.A. A. Rizkalla and A. H. Lefebvre, “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
26.N. K. Rizk and A. H. Lefebvre, “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
27.J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
28.J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170, 1991.
29.J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, No.2, March-April 1991.
30.M. Aligner and S. Witting, “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710, 1980.
31.T. Sattlemayer and S. Witting, “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
32.C. Press, A. K. Gupta and H. G. Semerjian, “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD, Vol.104, pp.111-119, 1988.
33.J. D. Whitlow and A. H. Lefebvre, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Spray, Vol.3, pp.137-155, 1993
34.徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995
35.王承光, “氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,” 國立成功大學碩士論文, 1996.
36.S. K. Chen and A. H. Lefebvre, “Spray Cone Angles of Effervescent Atomizers,” Atomization and Spray, Vol.4, pp.291-301, 1994.
37.S. D. Sovani, P. E. Sojka and A. H. Lefebvre, “Effervescent Atomization,” Progress in Energy and Combustion Science, 1999.
38.B. Leroux, O. Delabroy and F. Lacas, “Influence of Superpulsating Mode on Atomization Properties in Coaxial Air-assisted Atomizers,” Eighth International Conference on Liquid Atomization and Spray Systems, July 2000.
39.A. Kufferath , B. Wende, W. Leuckel, “Influence of liquid flow condition onspray characteristics of internal-mixing twin-fluid atomizers,” International Journal of Heat and Fluid Flow 20 (2000)513-519.
40.Lie-Jin Guo et al., ”Study on gas-liquid two-phase spraying characteristics of nozzles for the humidification of smoke,” Experimental Thermal and Fluid Science 26 (2002) 715-722.
41.Zhang, F. R., Wakabayashi, S. and Tokuoka, N., “The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers),” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
42.Jones, A. R., “Design Optimization of a Large Pressure-Jet Atomizer for Power Plant,” Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis., pp. 181-185, 1982.
43.Kenndy, J. B., “High Weber Number SMD Correlations for Pressure Atomizers,” Transactions of ASME Journal of Engineering for Gas Turbines and Power, Vol.108, pp.191-195, 1986.
44.Chin, J. S., Nickolaus, D and Lefebvre, A. H., “Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizers,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
45.De Corso, S. M., “Effect of Ambient and Fuel Pressure on Spray Drop Size,” ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
46.De Corso, S. M, and Kemeny, G. A., “Effect of Ambient and Fuel Pressure on Nozzle Spray Angle,” ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp.607-615, 1957.
47.Ortman, J. and Lefebvre, A. H., “Fuel Distributions from Pressure Swirl Atomizers,” Journal of Propulsion and Power, Vol. 1, No. 1, pp. 11~15, 1985.
48.Elkotb, M. M., Rafat, N. M., and Hanna, M. A., “The Influence of Swirl Atomizer Geometry on the Atomization Performance,” Proceedings of the 1st International Conference on Liquid Atomization and Spray System, Tokyo, 1978, pp. 109-115.
49.Chen, S. K., Lefebvre, A. H., and Rollbuhler, J., “Factors Influencing the Effective Spray Cone Angle of Pressure Swirl Atomizers,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp.97~103, 1992
50.Suyari, M. and Lefebvre, A. H., “Film Thickness Mesaurements in A Simplex Swirl Atomizer,” Journal of Propulsion and Power, Vol.2, No.6, pp. 528~533, 1986.
51.洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
52.郭振展, “渦旋作用在哈特曼共振腔中之霧化效應, NSC 89-2815-C-006-140-R-E, 2001.” 大專學生參與專題研究計劃研究成果報告,
53.韓亞軒“多孔噴嘴漩渦器效應下霧化現象” 國立成功大學碩士論文, 2004.
54.林彰廷 “多孔噴頭效應在氣助是噴嘴中之霧化特性研究” 國立成功大學碩士論文, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw