進階搜尋


 
系統識別號 U0026-0812200911343727
論文名稱(中文) 地層下陷模擬程序之建立與應用—以大城鄉西港地區為例
論文名稱(英文) Development of The Procedure for Land Subsidence Simulation and Its Application–A Case Study in SiGan, TaChen Village
校院名稱 成功大學
系所名稱(中) 土木工程學系專班
系所名稱(英) Department of Civil Engineering (on the job class)
學年度 93
學期 2
出版年 94
研究生(中文) 陳建銘
研究生(英文) Chien-Ming Chen
學號 n6790104
學位類別 碩士
語文別 中文
論文頁數 154頁
口試委員 口試委員-李德河
口試委員-黃添坤
口試委員-李維峰
指導教授-陳景文
口試委員-陳怡睿
中文關鍵字 地層下陷  土層壓縮  黏土壓密  地下水  數值模擬 
英文關鍵字 interbed  subsidence  modflow  consolidation  compact  groundwater 
學科別分類
中文摘要   台灣地區降雨分佈不均,地面蓄水設施新建又屢遭民意制肘,沿海地區產業多依賴開發成本較低及水質水量較穩定之地下水,超抽地下水引致之地層下陷課題已逐漸成為國內相關重大公共工程或大型開發案所需納入評估之重要項目。專家學者雖持續進行各種地層下陷數值模式之研究發展,然而仍無法提供地層下陷相關決策單位普遍性之應用。
  本研究採用美國地質調查局(U.S.G.S)發展、公開,並廣為使用之MODFLOW地下水流數值模式及其附加IBS1模組,透過適當之模式建構方法、詳加檢討模式使用及初始條件、壓密參數之估算方法,並配合近年建置之地層下陷與地下水位分層觀測數據,將模式應用於彰化縣大城鄉西港地區之實例演算中,除成功展現出黏土層壓密延遲效應,且適切反應該地區地層壓縮量變化外,並訂定一個可應用之建模流程。
  需輸入之模式參數計有8個,影響地層壓縮量模擬結果者,主要為初始水頭、預壓密水頭、垂直水力傳導係數,及彈性/非彈性儲水係數等4個相互呈現高度非線性關係之黏土層參數。本研究依據歷年產業用水變化,於時間軸上劃分數個地下水利用期,採複線性迴歸等統計方法推估各含水層歷史水位,並利用現地土層物理及壓密試驗數據,計算各參數起始猜測值,該方法經率定後證實可達降低模式參數率定困難度之目的。
  最後,依據大城鄉西港地區產業發展及地下水利用特色,參酌主管機關提出之防治措施,本研究分析5種地層下陷情境案例對該地區地層下陷發展之影響。分析結果顯示,未來10年內地下水位若持續下降,該地區地層下陷現象可能進入第二波嚴重期;即使該地區地下水位皆不再下降,民國92年至102年間尚有約達0.65m之壓縮潛勢;為有效防止大城鄉西港地區地層壓縮情況加劇,防止第3含水層水位持續洩降,進而促使其回昇應為該地區之防治工作首務。



英文摘要   In Taiwan, spatial and temporal distribution of rainfall is not uniform. Building new reservoirs usually face the people’s objections. Due to its relatively low development cost, groundwater has been the main source of water supply for most aquacultural and coastal industries. Land-subsidence due to the groundwater overdraft has become the evaluation index for important public works or large development cases. Many researchers keep on developing the models for land-subsidence simulation. However, the models cannot provide suitable information for decision-making on land-subsidence prevention and reclamation.
  In this study, the integrated numerical groundwater and land-subsidence model, i.e., MODFLOW developed by USGS and its modular subroutine (i.e., IBS1), was used to simulate land-subsidence. For establishing an applicable process to construct land-subsidence models, the study investigated the model in detail, including model construction, initial condition setting, and parameter estimation. The analytical results reveal that the model has a good performance for land-subsidence simulation in the study area by using observed groundwater and compaction data. Moreover, it’s found that the model can appropriately consider the time delay of consolidation and react the compress variety for clay layers.
  There are eight model parameters that have to be set in the model, in which four parameters for clay layers, i.e., initial head, pre-consolidation head, vertical hydraulic conductivity, and elastic/inelastic storage coefficient, have high non-linear relationships. This study divided the duration for groundwater utilization into several time periods and then used the multiple regression analysis to estimate groundwater levels for each period. According to the results of soil test in the field and laboratory, the study estimated the initial parameter values of soil layers. The aforementioned method decreased the difficulty of model calibration in the study.
  Finally, based on the features of industries and groundwater utilization, and government’s policies, 5 hypothetical scenarios of groundwater withdrawal were adopted to evaluate the effects of land-subsidence. The analytical results reveal: (1) land-subsidence in the region may be more serious, if groundwater levels decline in the next decade; (2) if the groundwater levels keep constant in the next decade, the land- subsidence still increases 0.65 m; and (3) groundwater levels in the 3th aquifer need to keep from descending for preventing the land-subsidence from getting worse.




論文目次 摘要 I
Abstract Ⅱ
誌謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 ⅩI
符號表 ⅩⅣ
水文地質名詞中英對照 ⅩⅤ
第一章、緒論 1
 1.1 前言 1
 1.2 研究動機與目的 1
 1.3 研究範圍及項目 2
 1.4 論文組織 3
第二章、文獻回顧 5
 2.1 地層下陷研究方法 5
 2.1.1 預測地層下陷量之數學方法 6
 2.1.2 地層下陷數值計算模式法 9
 2.2 壓密沈陷 11
 2.3 地下水流理論 13
 2.4 Terzaghi 一維壓密固結理論 14
第三章、研究方法 16
 3.1 MODFLOW地下水流數值模式簡介 16
 3.2 Interbed-Storage 模組理論 18
 3.2.1 含水層水位變化及黏土層有效應力之關係 19
 3.2.2 黏土層壓縮量計算 20
 3.2.3 黏土夾層壓縮影響併入地下水流方程式 22
 3.2.4 假設條件及使用限制 23
 3.3 地層下陷模式之建構 25
 3.3.1 水文地質參數設定及參考範圍之建立 25
 3.3.2 含水層歷史水位變化趨勢推估 26
 3.3.3 黏土層初始水頭起始猜測值計算 27
 3.3.4 黏土層預壓密水頭起始猜測值計算 29
 3.3.5 非彈性/彈性儲水係數(Skv/Ske)起始猜測值計算 30
 3.3.6 模式參數敏感度分析與率定 31
第四章、研究區域環境概述與分析 41
 4.1 地理位置 41
 4.2 自然環境 41
 4.2.1 水資源供需環境 41
 4.2.2 供排水系統與水質 42
 4.2.3 地下水 42
 4.2.4 地層下陷 43
 4.2.5 水文地質與土壤壓密參數 43
 4.3 人文環境 44
 4.3.1 土地利用 44
 4.3.2 產業發展 45
 4.4 含水層歷史水位變化趨勢推估 45
第五章、大城鄉地層下陷模擬程序之建立 61
 5.1 模式幾何架構之建立 61
 5.1.1 模式層及網格劃設 61
 5.1.2 模式層型態定義 62
 5.1.3 模式邊界條件及頂、底部高程 62
 5.2 模式時間尺度設定及觀測值輸入 62
 5.2.1 模擬時間 62
 5.2.2 地下水位觀測值 63
 5.2.3 地層壓縮量觀測值 63
 5.3 模式起始條件設定 64
 5.3.1 初始水位 64
 5.3.2 水文地質參數 65
 5.3.3 IBS1模組參數  67
 5.4 模式輸入條件及控制條件設定 69
 5.4.1 時變指定水頭模組水位 69
 5.4.2 模式輸出控制參數 69
 5.4.3 方程組求解方法 69
 5.5 參數敏感度分析、率定及驗證 70
 5.5.1 參數敏感度分析 70
 5.5.2 模式參數率定 73
 5.5.3 模式驗證與討論 75
第六章、地層下陷情境案例分析 103
 6.1 案例情境研擬 103
 6.2 情境案例分析 105
 6.3 案例分析結果與討論 107
第七章、結論與建議  118
 7.1 結論 118
 7.2 建議 121
參考文獻  124
附錄A、MODFLOW及支援模組輸入說明 130
附錄B、地層下陷分層監測井--西港站歷年監測結果 138
附錄C、含水層歷史水位變化趨勢推估 144
自述 154

表目錄
表3-1 各類土層Kh參考範圍 33
表3-2 各類土層Ss參考範圍 33
表3-3 各類土層Sy參考範圍 33
表3-4 黏土層Sskv及Sske參考範圍 33
表4-1 西港站觀測井抽水試驗結果綜整表 48
表4-2 興華國小地陷監測井土壤透水試驗結果表 48
表4-3 興華國小地陷監測井單向度壓密試驗結果表 48
表4-4 大城鄉內陸養殖面積歷年變化表 49
表4-5 本研究採用含水層各時期水位變化趨勢表 49
表4-6 大城鄉西港地區各含水層民國72-92年水位推估表 50
表4-6 (續1)大城鄉西港地區各含水層民國72-92年水位推估表 51
表4-6 (續2)大城鄉西港地區各含水層民國72-92年水位推估表 52
表4-6 (續3)大城鄉西港地區各含水層民國72-92年水位推估表 53
表5-1 各黏土模式層包含黏土層資訊表 78
表5-2 各模式層頂、底部高程表 78
表5-3 模式模擬時間表 79
表5-4 各模式層地層壓縮觀測值輸入表 80
表5-4 (續)各模式層地層壓縮觀測值輸入表 81
表5-5 模4層模擬初始水頭計算表 82
表5-5 (續1)模4層模擬初始水頭計算表 83
表5-5 (續2)模4層模擬初始水頭計算表 84
表5-5 (續3)模4層模擬初始水頭計算表 85
表5-6 各模式層模擬初始水位表 86
表5-7 各模式層水文地質參數起始猜測值輸入表 86
表5-8 各黏土模式層物理及壓密性質估算表 87
表5-9 各黏土模式層壓密參數計算表 87
表5-10 模1層及模5層各參數對地下水位敏感度評估比較表 88
表5-11 模4層及模6層各參數對地層壓縮量敏感度評估比較表 88
表5-12 各黏土模式層地層壓縮量相關參數起始猜測值、率定值及參考範圍值
    比較表 89
表5-13  各黏土模式層驗證期間地層壓縮計算成果表 90
表6-1 情境案例A,各黏土層累計壓縮量及年壓縮速率表 110
表6-2 情境案例B,各黏土層累計壓縮量及年壓縮速率表 111
表6-3 情境案例C,各黏土層累計壓縮量及年壓縮速率表 112
表6-4 情境案例D,各黏土層累計壓縮量及年壓縮速率表 113
表6-5 情境案例E,各黏土層累計壓縮量及年壓縮速率表 114
表6-6 各情境案例內容、地下水位變化趨式假設及累計地層壓縮量比較 115
表6-7 案例B情境下,各黏土層最終累計壓縮量及壓縮潛能計算表 115

圖目錄
圖3-1 MODFLOW模式之離散方法示意圖 34
圖3-2 MODFLOW模式各網格單元地下水流關係示意圖 35
圖3-3 含水層中低透水性黏土夾層示意圖 36
圖3-4 地層下陷模式建構流程圖 37
圖3-5 含水層歷史水位推估流程圖 38
圖3-6 黏土層初始水頭估算示意圖 38
圖3-7 黏土層預壓密水頭估算流程圖 39
圖3-8 黏土層預壓密水頭估算示意圖 39
圖3-9 黏土層Sskv及Sske起始猜測值估算流程圖 40
圖4-1 大城鄉地理位置示意圖 53
圖4-2 彰化縣大城鄉排水系統圖 54
圖4-3 大城鄉地下水分層觀測井歷年觀測成果圖 54
圖4-4 大城鄉西港國小內政部水準點歷年水準檢測成果圖 55
圖4-5 彰化縣西港國小地陷監測井下陷量歷線圖 55
圖4-6 彰化縣西港國小地層下陷分層監測井各層年壓縮量 56
圖4-7 濁水溪沖積扇水文地質剖面分布圖—彰化地區(剖面1至4) 57
圖4-8 彰化地區地層剖面線「田中-西港」段水文地質剖面圖 57
圖4-9 大城鄉各種土地利用型態分佈圖 58
圖4-10 民國90年大城鄉養殖魚塭及放養魚種分佈圖 58
圖4-11 台灣蜆養殖發展期程、抽水型態及地下水位對應圖 59
圖4-12 大城鄉西港地區歷史地下水變化趨勢推估圖 60
圖5-1 大城鄉鄰近地下水分層觀測井及地層下陷分層監測井位置圖 91
圖5-2 模式網格劃設圖 91
圖5-3 本模式水文地質概念模式層 91
圖5-4 本模式模式層及下陷觀測資料對應圖 92
圖5-5 濁水溪沖積扇「二水-芳苑」剖面圖 92
圖5-6 模1層Kh、Kv、Ss及Sy等參數對於模1層地下水位之敏感度分析圖 93
圖5-7 模5層Kh、Kv、Ss及Sy等參數對於模5層地下水位之敏感度分析圖 93
圖5-8 模4層Kh、Kv、Ss、Skv、Ske及hc等參數與h0對模4層地層壓縮量之敏
    感度分析圖 94
圖5-9 模6層Kh、Kv、Ss、Skv、Ske及hc等參數與h0對模6層地層壓縮量之敏
    感度分析圖 95
圖5-10 各模式層採用參數起始猜測值模擬地下水位結果 96
圖5-11 模1層以參數率定值模擬地下水位結果 96
圖5-12 各模式層採用參數起始猜測值模擬累計地層壓縮量結果 97
圖5-13 模4層壓密參數率定流程 98
圖5-14 模4層各h0之參數組率定結果及其累計地層壓縮量曲線圖 99
圖5-15 調整參數後之模擬累計地層壓縮量結果 100
圖5-16 模式驗證結果 101
圖5-17 黏土夾層壓縮延遲現象 102
圖6-1 情境案例C中,模4層水位回昇且地層回脹 116
圖6-2 各情境案例之累計地層壓縮量發展曲線圖 116
圖6-3 情境案例B,各黏土層與鄰近含水層水位變化模擬結果 117
參考文獻 1.江金山、吳佩玲、講詳第、張廷政、詹福賜、張軒庭、溫坤禮,灰色理論入門,高立圖書,台北縣,(1998)。
2.林瑞琦,「一維耦合地層下陷模式之建立」,國立台灣大學土木工程學研究所碩士論文,(2000)。
3.周文賢,多變量統計分析,智勝文化,台北市,(2002)。
4.周孟科,「灰色理論應用於地層下陷之預測」,國立成功大學土木工程學研究所碩士論文,(1998)。
5.留英龍,「模糊理論應用於地層下陷之預測」,國立成功大學水利及海洋工程學研究所碩士論文,(1999)。
6.紀雲曜,「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,國立成功大學土木工程學研究所博士論文,(1996)。
7.柳志錫,「複雜含水地層之抽水沈陷行為」, 國立交通大學土木工程學研究所博士論文,(2004)。
8.柳志錫、黃鎮臺、杜富麗,「台灣地區地層下陷之歷史、現況與機制」,地層下陷管理與對策研討會論文集,第4-1至4-14頁,(2002)。
9.財團法人工業技術研究院,「台灣地區地層下陷監測井施設及其分析試驗(3/3)」,經濟部水利署,(2004)。
10.財團法人工業技術研究院,「台灣地區地層下陷監測井施設及其分析試驗(2/3)」,經濟部水利署,(2003)。
11.財團法人工業技術研究院,「台灣地區地層下陷之監測、調查及分析(3/4)」,經濟部水利署,(2003)。
12.財團法人工業技術研究院,「台灣地區地層下陷監測調查分析」,經濟部水利署,(2000)。
13.馬正明、王建力譯,大地工程導論,曉園出版社,台北市,(1985)。
14.徐萬樁譯,地下水學,徐氏基金會,台北市,(1968)。
15.梁昇、黃天福,地下水文學,大學圖書出版社,台北市,(1994)。
16.財團法人成大研究發展基金會,「地層下陷區土壤物性及力學行為之研究」,經濟部水利署,(1996)。
17.國立成功大學水工試驗所,「九十三年度大城鄉養殖漁業海水供應規劃」,彰化縣政府,(2004)。
18.國立成功大學水工試驗所,「彰化、雲林地區歷年地層下陷原因探討與對策研擬」,經濟部水利署,(2003)。
19.國立成功大學水工試驗所,「養殖漁業生產區水資源調配管理規劃」,經濟部水利署,(2003)。
20.國立成功大學水工試驗所,「循環水養殖及回歸水灌溉使用示範計畫」,經濟部水利署,(2003)。
21.國立成功大學水工試驗所,「工業區地層下陷潛勢評估及缺水應變措施規劃」,經濟部水利署,(2003)。
22.國立交通大學防災工程研究中心,「地下水資源整體營運規劃與綜合評估--濁水溪沖積扇」,經濟部水利署,(2000)。
23.國立交通大學防災工程研究中心,「區域性地下水水文特性分析—濁水溪沖積扇」,經濟部水利署,(2000)。
24.陳景堂,統計分析--SPSS for Windows 入門與應用,儒林出版社,台北縣(2004)。
25.陳信華,「應用遺傳演算法與試驗設計原則於地下水觀測井網設計」,國立交通大學土木工程研究所碩士論文,(2002)。
26.陳昶華,「現場地層下陷量及地下水位預估方法之探討」,國立成功大學土木工程學研究所碩士論文,(1998)。
27.許乃文,「灰色理論及類神經網路應用於雲林地區地層下陷之研究」,國立成功大學土木工程學研究所碩士論文,(1999)。
28.張俊福、鄧本讓、朱玉仙、劉啟千,應用模糊數學,地質初版社,北京,(1988)。
29.經濟部水利署,「彰化雲林地區地層下陷防治計畫」,(2004)。
30.經濟部中央地質調查所,「台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告」,(1999)。
31.經濟部水利署,「台灣地區地下水觀測網第一期計畫—地下水觀測網之建立及運作管理—地質水文分析及抽水試驗」,(1997)。
32.經濟部水資源委員會,「屏東平原地下水數學模式之研究」,(1993)
33.楊錦釧、黃良雄、張哲豪、許榮庭、蔡東霖,「海岸地區地陷潛能與危險評估技術」,地層下陷防治執行方案暨地下水觀測網整體計畫九十一年度執行成果發表研討會報告集,第A4-1至A4-16頁,(2002)。
34.楊道昌、張國強、陳建銘、陳文仁,「模糊多目標函數應用於改善養殖漁業型態之研究-以彰化縣大城鄉為例」,農業與經濟,第二十七期,第87至104頁,(2001)。
35.蔡碧鳳、邱心怡、游宜君(譯),基礎統計學,桂冠圖書,台北縣,(2002)。
36.蔡東霖,「區域性地下水超抽導致地層下陷模式之發展與應用」,國立交通大學土木工程學研究所博士論文,(2001)。
37.鍾明松,「以地下水洩降量及土壤結構評估地層之沈陷行為」,經濟部水資源局八十五年度地下水觀測井網暨地層下陷防治執行方案成果發表會,第215至234頁,(1997)。
38.蘇苗彬、楊高明、陳育志,「Study on the land subsidence behavior using reverse calculation and prediction」,第二屆地下水資源及水質保護研討會論文集,第291至303頁,(1997)。
39.Andersen, P.F. , “A manual of instructional problems for the U.S.G.S. MODFLOW model”, Center for Subsurface Modeling Support. EPA/600/R-93/010 (1993).
40.Biot, M.A. , “Theory of elasticity and consolidation for a porous anisotropic solid”, Journal of Applied Physics, 26, pp. 182-185 (1955).
41.Biot, M.A. , “General theory of three-dimensional consolidation”, Journal of Applied Physics, 12, pp. 155-164 (1941).
42.Casagrande, A. , “The structure of clay and its importance in foundation engineering”, Journal of the Boston Society of Civil Engineers, April, pp.72–113(1932).
43.Chiang, W.H. and W. Kinzelbach, Processing modflow--a simulation system for modeling groundwater flow and pollution, IHW, Zurich (1998).
44.Freeze, R.A. and J.A. Cherry, Groundwater: Prentice-Hall, Inc. Englewood Cliffs, New Jersey(1979).
45.Hoffmann, J. , S.A. Leake, D.L. Galloway, and A.M. Wilson, “Modflow-2000 groundwater model—user guide to the subsidence and aquifer-system compaction (sub) package”, U.S. Geological Survey Open-File Report 03-233 (2003).
46.Hill, M.C. , E.R. Banta, A.W. Harbaugh, and E.R. Anderman, “Modflow-2000, the U.S. Geological Survey modular ground-water model—user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs”, U.S. Geological Survey Open-File Report 00-184 (2000).
47.Hill, M.C. , “Methods and guidelines for effective model calibration”, U.S. Geological Survey Open- File Report 98-4005 (1998).
48.Jorgensen, D.G. , “Relationships between basic soils-engineering equations and basic groundwater flow equations”, U.S. Geological Survey Water-Supply Paper 2064, pp. 40 (1980).
49.Jacob, C. E. , “Flow of ground-water”, in Engineering Hydraulics, edited by H. Rouse, John Wiley, New York, pp. 321-386 (1950).
50.Jacob, C.E. , “The flow of water in the elastic artesian aquifer”, Eos Trans. AGU, 21, pp. 574-586 (1940).
51.Larson, K.J. , H. Basagaolu, and M.A. Marino, “Prediction of optimal safe ground water yield and land subsidence in the los banos-kettleman city area, california, using a calibrated numerical simulation model”, Journal of Hydrology, 242, pp. 79-102 (2001).
52.Lapin, Lawrence L., Modern engineering statistics, Duxbury Press, Belmont, CA (1997).
53.Leake, S.A. and D.E. Prudic, “Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model”, U. S. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6 Chapter A2 (1991).
54.McDonald, Mich el G. and Arl n W. Harbaugh, “A modular three-dimensional finite-difference ground-water flow model”, U.S. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6 Chapter A1 (1988).
55.Mei, C.C. , “Gravity effect in consolidation of layer of soft soil”, ASCE Journal of Eng. Mech., pp. 1038-1047 (1985).
56.Nishikawa, T. , D.L. Rewis, and P.M. Martin, “Numerical simulation of ground-water flow and land subsidence at Edwards Air Force Base, Antelope Valley, California”, U.S. Geological Survey Water-Resources Investigations Report 01-4038 (2001).
57.Poeter, E.P. and M.C. Hill, “Documentation of ucode, a computer code for universal inverse modeling”, U.S. Geological Survey Open- File Report 98-4080 (1998).
58.Poland, J.F. and G.H. Davis, “Land subsidence due to withdrawals of fluids, in Varnes, D.J. , and Kiersch,George, eds. ”, Reviews in Engineering Geology: Volume 2:Boulder, Colorado, Geological Society of America, pp. 187-269 (1969).
59.Riley, F.S. , “Analysis of borehole exteneometer data from central California, in T&on, L.J. ed. ”, Land subsidence, v.2: International Association of Scientific Hydrology Publication 89, pp. 423-431 (1969).
60.Segol, G. , “Classic groundwater simulations: proving and improving numerical models”, Genevieve Segol (1994).
61.Terzaghi, K. , Theoretical Soil Mechanics, Chapman and Hall, London (1943).
62.Terzaghi, K. , Erdbaumechanic Auf Bodenphysikalisher Grundlage, Franz Deuticke, Vienna (1925).
63.Theis, C.V. , “The significance and nature of the cone of depression in groundwater bodies”, Geo. , 33, pp. 889- 920 (1938).
64.Verruijt, A. , “Elastic storage of aquifers in flow through porous media”, edited by R. J. M. Dewiest, pp. 331-376, Academic, New York (1969).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw