進階搜尋


 
系統識別號 U0026-0812200911292566
論文名稱(中文) 中型足球機器人之即時避障與控制策略之研究
論文名稱(英文) A Real-time Obstacle Avoidance and Control Strategy for a Middle-Size Soccer Robot
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 93
學期 2
出版年 94
研究生(中文) 許益嘉
研究生(英文) Yi-Chia Hsu
電子信箱 n2692414@ccmail.ncku.edu.tw
學號 n2692414
學位類別 碩士
語文別 英文
論文頁數 81頁
口試委員 口試委員-呂虹慶
口試委員-白能勝
口試委員-郭逸平
口試委員-孔蕃鉅
指導教授-李祖聖
中文關鍵字 全方位視覺系統  控制策略  避障  影像處理 
英文關鍵字 obstacle avoidance  image processing  control strategy  omnidirectional vision system 
學科別分類
中文摘要   本論文主要係發展以RoboCup規則為標準之中型機器人足球競賽系統,其中包括了中型足球機器人的硬體架構之設計、驅動電路之製作、視覺伺服系統的研發、以及即時影像處理技術的設計與實現。整個中型機器人足球系統為一全方位視覺回授控制系統。置於機器人正上方的全方位視覺系統負責擷取場地上的畫面,並將影像資訊傳送至機器人本身的主控電腦端,再經由影像分析辨識之後,得到足球場上環境的動態資訊。主控電腦判斷場上機器人與球的相對狀況等資訊後,來決定機器人的行為模式與策略,並將控制策略運算的結果,經由模糊控制器的輸出來控制機器人的馬達。本論文首先提出所設計之機器人足球競賽系統,並介紹其硬體架構,其次我們將詳述影像處理之流程。接著,我們提出具有即時障礙物規避功能的控制策略來賦予足球機器人所需產生的行為模式。最後以實驗來說明所設計之機器人足球系統的效益與適用性。


英文摘要  This thesis is mainly to develop a robot soccer system to conform RoboCup middle size league. The robot soccer system includes the design and implementation of the hardware architecture, driver circuits, visual servo system, and the real-time image processing technique. The middle-size robot soccer system can be considered as an omnidirectional visual feedback system. The image of the field is captured via the camera mounted above the robot. The information of image data is transmitted to the on-board PC and then analyzed to obtain the dynamic environmental information of the field. From the relative situations among the ball and the robots, the on-board PC will figure out the appropriate strategy and behavior mode, and then send the command to the fuzzy logic based velocity controller to drive the motors. In this thesis, the structure of the middle-size robot soccer system is addressed firstly. Then details of the image flow system including obstacles avoidance and color range searching method are presented. After that, we propose the real-time obstacle avoidance and control strategies to assign the behavior of the soccer robot. Finally, the experiments of a soccer robot with obstacle avoidance are performed to verify the benefit and the feasibility of the developed schemes.


論文目次 Abstract Ⅰ
Acknowledgment Ⅲ
Contents Ⅳ
List of Figures Ⅶ
List of Tables Ⅹ



Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2. Overview of the Middle-size Robot Soccer System 4
2.1 Introduction 4
2.2 Overview of the Middle Size Robot League 5
2.3 Hardware Architecture of the Middle Size Robot 9
2.3.1 The Omnidirectional Vision Module 9
2.3.2 The Wireless Communication Module 12
2.3.3 The Driver and DC Motor Module 14
2.3.4 The Power System 17
2.3.5 The On-board PC 18
2.3.6 Hardware Configuration of the Soccer Robot 18
2.4 Summary 20
Chapter 3. Vision System 21
3.1 Introduction 21
3.2 YUV Color Formation 22
3.3 The Boundary Following Algorithm for Object Recognition 25
3.4 Classify the Information of the Robot 31
3.4.1 Fundamental Data 31
3.4.2 Calculation of the Information of the Robot 32
3.4.3 Obstacle Detection 36
3.5 Results 40
Chapter 4. Obstacle Avoidance and Control Strategy 42
4.1 Introduction 42
4.2 Target Generation Method 43
4.3 Fuzzy Logic Based Velocity Controller 45
4.3.1 Fuzzification Interface 46
4.3.2 Decision Making Logic 48
4.3.3 Knowledge Base 48
4.3.4 Defuzzification Interface 50
4.3.5 The Fundamental Speed 51
4.4 Real-time Obstacle Avoidance 51
4.4.1 Reconfirmation of Obstacle Detection 52
4.4.2 Obstacle-avoidance Strategy 55
4.5 Offense and Defense Strategies 63
4.6 Summary 65
Chapter 5.Experimental Results 66
5.1 Introduction 66
5.2 The Operation Interface 67
5.3 Experiment Results of Obstacle Avoidance 70
5.4 Experiments for Offense and Defense Strategies 74
Chapter 6. Conclusion and Future Works 76
6.1 Conclusion 76
6.2 Future Works 77
References 78
Biography 81
參考文獻 [1] RoboCup, http://www.robocup.org/.
[2] W.M. Shen, J. Adibi, and R. Adobbati, “Autonomous soccer robots,” Robot Soccer World I/RoboCup-97., 1998, pp. 295-304.
[3] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile robot with omnidirectional image sensor COPIS”, IEEE Trans. Robotics Automat., Vol. 11, Oct. 1995. pp. 634–648.
[4] C. Pegard and E.M. Mouaddib “A mobile robot using a panoramic view,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 89-94, 1996.
[5] E. Rimon, “Exact robot navigation using artificial potential functions,” IEEE Trans. On Robotics and Automation, vol. 8, no. 5, Oct., pp. 501-518, 1992.
[6] J. H. Kim, K. C. Kim, D. H. Kim, Y. J. Kim and P. Vadakkepat, “Path planning and role selection mechanism for soccer robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3216-3221, 1998.
[7] C. A Lai, Design of fuzzy field control for a one-on-one robot soccer system, Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2001.
[8] T.H. S. Li, C.Y. Chen, S. Lee, and Y.Z. Guo, “Design of fuzzy ring univector field and its application to robot soccer game”, in Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 85-90, 2003.
[9] Daisuke Sekimori, Tomoya Usui, Yasuhiro Masutani, and Fumio Miyazaki, “High-Speed Obstacle Avoidance and Self-Localization for Mobile Robots Based on Omni-directional Imaging of Floor Region,” in RoboCup-2001: Robot Soccer World Cup V, pp. 204-213.
[10] FIRA, http://www.fira.net/.
[11] Laws of F2000 http://www.er.ams.eng.osaka-u.ac.jp/rc2004msl/msl-rules-2004.pdf
[12] http://www.yoko-tech.com/2product/YK-2849.php.
[13] http://cweb.msi.com.tw/.
[14] http://www.corega.com.tw/about/index.php
[15] http://www.faulhaber-group.com/n40966/n.html
[16] http://www.micromo.com/
[17] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Ed., Addision-Wesley Publishing Co., 1992.
[18] Y.J. Lee, D.Y. Kim and M.J. Chung, “Feature matching in omnidirectional images with a large sensor motion for map generation of a mobile robot,” Pattern Recognition Letters, vol. 24, pp. 413-427, 2004.
[19] D.Y. Kim, Y.J. Lee., and M.J. Chung, “Feature matching for omnidirectional image based on singular value decomposition,” in Proceedings of International Conference on Control, Automation and Systems, 2002
[20] S.W. Bang and M.J. Chung, “Sensor fusion for omnidirectional sensor-based local homming navigation using fuzzy arithmetic,” Intelligent Automation and Soft Computing, 1998
[21] E. M. Mouaddib and Bruno Marhic, “Geometrical matching for mobile robot localization,” IEEE Transactions ON Robotics and Automation, Vol. 16, No. 5, pp.542-552, October 2000.
[22] I.D. Scalbe, “Natural representations for straight lines and the Hough transform on discrete arrays,” IEEE Transactions on pattern analysis and machine intelligence, Vol. 11, No. 9, pp. 941-950, Sept 89.
[23] C. Marques and P. Lima, “A localization method for a soccer robot using a vision-based omni-directional sensor,” in Proc. Of RoboCup Workshop, Melbourne, Australia, 2000.
[24] R. Jain, R. Kasturi, and B. G. Schunk, Machine Vision, Ed., McGraw-Hill Book Co., 1995.
[25] Johann Borenstein and Yoram Koren, “Obstacle avoidance with ultrasonic sensors,” IEEE Journal of Robotics and Automation, Vol. 4, No. 2, pp.213-218, April 1988.
[26] Johann Borenstein and Yoram Koren, “ Real-Time obstacle avoidance for fast mobile robots,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp.1179-1187, September/October, 1989.
[27] C. Marques and P. Lima, “Multi-sensor navigation for soccer robots,” in RoboCup-2001: Robot Soccer World Cup V, pp. 144-153.
[28] Takeshi Matsuoka, Manabu Araoka, Tsutomu Hasegawa, Akira Mohri, Motoji Yamamoto, Toshihiro Kiriki, Nobuhiro Ushimi, Takuya Sugimoto, Jyun’ichi Inoue, and Yuuki Yamaguchi, “Localization and Obstacles Detection Using Omni-directional Vertical Stereo Vision,” in RoboCup-2001: Robot Soccer World Cup V, pp. 429-434.
[29] Giovanni Adorni, Luca Bolognini, Stefano Cagnoni, and Monica Mordonini, “Stereo Obstacle Detection Method for a Hybrid Omni-directional/Pin-Hole Vision System,” in RoboCup-2001: Robot Soccer World Cup V, pp. 244-250.
[30] L. A. Zadeh, “Fuzzy Algorithm,” Inform. Control, Vol. 12, pp. 94-102, 1968.
[31] L. A. Zadeh, “Fuzzy Sets” Inform. Control, Vol. 8, pp. 338-353, 1965.
[32] Y. Z. Guo, “Design and Implement Ring Potential Field Method for a Three-on-Three Robot Soccer Game,” Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2002.
[33] T. M. Hung, “Design and implementation of a Three-On-Three Robot Soccer System” Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2002.
[34] Elon Rimon, “Exact Robot Navigation Using Artificial Potential Functions,” IEEE Trans. On Robotics and Automation, Vol. 8, No. 5, pp. 501-518, Oct. 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2007-07-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw