進階搜尋


 
系統識別號 U0026-0812200911290005
論文名稱(中文) 四鈣磷酸鹽骨水泥基本性質研究及熱處理對性質之影響
論文名稱(英文) Basic properties and the effects of heat-treatment of tetracalcium phosphate cement
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 93
學期 2
出版年 94
研究生(中文) 林冠良
研究生(英文) Kuan-Liang Lin
學號 N5887112
學位類別 博士
語文別 中文
論文頁數 151頁
口試委員 口試委員-林立民
召集委員-尹相姝
指導教授-朱建平
指導教授-陳瑾惠
口試委員-林瑞模
中文關鍵字 氫氧基磷灰石  熱處理  骨水泥  四鈣磷酸鹽 
英文關鍵字 tetracalcium phosphate  hydroxyapatite  bone cement  heat-treatment 
學科別分類
中文摘要   本研究是要探討關於當四鈣磷酸鹽浸泡於酸性溶液中,在四鈣磷酸鹽表面上產生的鬚晶其微結構和微化學(特別是鈣/磷比)的變化。在反應初期,球狀的微小含水二鈣磷酸鹽晶粒開始析出在四鈣磷酸鹽的表面上。當四鈣磷酸鹽預處理時間為1小時時,產生了六方晶結構的鬚晶狀磷灰石,其化學結構為缺鈣型的磷灰石且平均鈣/磷比為1.5。隨預處理時間增長,鬚晶狀磷灰石繼續長大,在24小時後,鬚晶狀磷灰石的長度和厚度可分別大於500nm和50nm,其平均鈣/磷比為1.8。在微化學的分析裏顯示長在四鈣磷酸鹽表面的鬚晶狀磷灰石是非計量型的磷灰石。在抗壓強度方面顯示在四鈣磷酸鹽表面產生的鬚晶狀磷灰石若在適當的條件下,能大幅度地改善骨水泥的機械性質。

  為了能更實用,本研究提供一種簡單的熱處理方法可以延長由四鈣磷酸鹽粉末所製成的骨水泥的工作時間/硬化時間,同時能維持骨水泥的強度。當四鈣磷酸鹽粉末經過300℃或者較低溫的熱處理後,此四鈣磷酸鹽骨水泥的工作時間和硬化時間分別增加了50-75%和60-80%,而XRD和FTIR的結果都顯示當四鈣磷酸鹽粉末經過較高溫熱處理時,會在反應初期促進四鈣磷酸鹽相轉變成磷灰石相,但當四鈣磷酸鹽骨水泥繼續浸泡於37℃Hanks'人工模擬體液中時則會使磷灰石的進一步生成變慢。有較多量磷灰石生成量的骨水泥試片有較高的抗壓強度。


英文摘要  The present study investigates the changes in microstructure and microchemistry (particularly Ca/P ratio) during whisker formation on the surface of TTCP powder in acid solution. In the earlier stage, fine globular-shaped DCPD crystals are observed to precipitate on the surface of TTCP particles. When treated for 1 h, hexagonal Ca-deficient apatite whiskers with an average Ca/P ratio of 1.5 form. With treating time the apatite whiskers continue to grow in size and increase in Ca/P ratio. When treated for 24 h, the length and thickness of the apatite whiskers can reach >500 and >50 nm, respectively, with an average Ca/P ratio of 1.8. The microchemical data indicate that the apatite whiskers grown on the surface of TTCP particles are substantially non-stoichiometric in nature. Compressive strength data indicate that apatite whiskers grown on TTCP surface under a favorable condition can largely improve the properties of the resulting CPC.

 For practical used, we provide a simple heat treatment method that can prolong the working/setting time without using additives or sacrificing its strength. When the powder is heat-treated at 300 oC or lower, the working and setting times of the TTCP cement increase by 50-75% and 60-80%, respectively. Both XRD and FTIR results indicate that heat-treating the TTCP powder to higher temperatures promotes an early TTCP-apatite phase transition but slows down the further formation of apatite during immersion of the TTCP cement in Hanks’ solution. The CPC samples having larger amounts of apatite have higher strengths.



論文目次 Abstract......................................................................3
中文摘要......................................................................4
總目錄........................................................................5
表目錄........................................................................8
圖目錄.......................................................................10
第一章 緒論..................................................................12
第二章 生醫材料..............................................................16
2-1 生醫材料的種類...........................................................18
2-2 生醫陶瓷的種類...........................................................20
2-3 生醫玻璃.................................................................22
2-4磷酸鈣鹽類................................................................23
2-4-1 氫氧基磷灰石(HA) ......................................................24
2-4-2 β-三鈣磷酸鹽(β-TCP) ...................................................31
第三章 理論基礎與文獻回顧....................................................44
3-1 前言.....................................................................45
3-2 鈣磷系骨水泥的發展與簡介.................................................46
3-2-1磷酸鈣鹽類的水化反應....................................................47
3-2-2 鈣磷系骨水泥的應用.....................................................50
3-2-3 理想的骨填充材.........................................................52
3-3 鈣磷系骨水泥的測試.......................................................53
3-3-1 體外測試...............................................................53
3-3-1-1 鈣磷系骨水泥浸泡人工體液之體外測試...................................53
3-3-1-2 溶解行為.............................................................53
3-3-1-3 析出行為.............................................................54
3-3-1-4 影響體外測試機械性質之因素...........................................55
3-3-2 體內測試...............................................................55
3-3-2-1 實驗動物選擇.........................................................56
3-3-2-2 植入部位選擇.........................................................57
3-3-2-3 植入週期選擇.........................................................57
3-3-2-4 測試影響評估.........................................................58
3-4 鈣磷系骨水泥植入骨骼組織後之反應.........................................59
第四章 四鈣磷酸鹽在酸性溶液中鬚晶的產生......................................71
4-1四鈣磷酸鹽在磷酸中鬚晶的產生..............................................72
4-1-1 摘要...................................................................72
4-1-2 材料和實驗方法.........................................................73
4-1-3 結果與討論.............................................................76
4-2四鈣磷酸鹽在鹽酸溶液中鬚晶的產生..........................................80
4-2-1 摘要...................................................................80
4-2-2 前言...................................................................81
4-2-3 材料和實驗方法.........................................................83
4-2-4 結果與討論.............................................................85
4-2-5 結論...................................................................90
第五章 熱處理對四鈣磷酸鹽骨水泥的硬化行為和抗壓強度的影響響…………………….117
5-1 摘要....................................................................118
5-2 前言....................................................................119
5-3 材料和實驗方法..........................................................121
5-4 結果與討論..............................................................123
5-5 結論....................................................................126
第六章 總結論...............................................................134
參考文獻....................................................................137
誌謝........................................................................149
作者簡介及論文著作..........................................................150

參考文獻 Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson Jr PD, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg 1988;70A:347-56.
Albee FH. Studies in bone growth: Triple CaP as a stimulus to osteogenesis. Ann Surg 1920;71:32-6.
Aoki H. Science and medical applications of hydroxyapatite. Tokyo, Takayama Press 1991.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and management of vertebral compression fractures. Spine 1999;24:1521-6.
Barkoš D, Soldán M, Hernández-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials 1999;20:191-5.
Bauer TW. Hydroxyapatite controversies. Orthopedics 1995;18:885-8.
Belkoff S, Mathis J, Deramond H, Jasper L. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use in vertebroplasty. Transactions of the 47th annual meeting of the Orthopaedic Research Society, San Francisco. 25-28 February 2001
Brown PW, Fulmer M. Kinetics of hydroxyapatite formation at low temperature. J Am Ceram Soc 1991;74:934-40.
Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res Nat Bur Stand 1965;69A:547-51.
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res Abs 1983;207:662-72.
Brown WE, Chow LC. Dental resptorative cement pastes. US Patent No. 4518430, 1985.
Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent No. 4612053, 1986.
Brown WE, Chow LC. A new calcium phosphate, water-setting cement, in Cements Research Progress 1986, Brown PW, editor. American Ceramic Society, Westerville OH. 1987;352-79.
Callaghan JJ. Current concerts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg 1993;75A:299-310.
Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH. Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 1994;28:1439-43.
Chen WC, Chern Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res 2003;64A:664-71.
Chen WC, Ju CP, Chern Lin JH. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks’ solution. J Oral Rehabil. Accepted.
Chohayeb AA, Chow LC, Tsaknins PJ. Evaluation of calcium phosphate as a root canal sealer-filler material. J Endodont 1987;13:384-7.
Chow LC, Takagi S. Calcium phosphate hydroxyapatite precursor and methods for making and using the same. US Patent No. 5542973, 1996.
Chow LC. Calcium phosphate materials: reactor response. Adv Dent Res 1988;2:19:181-4.
Chow LC, Takagi S. Self-setting calcium phosphate cements. Mat Res Soc Symp Proc 1991;179:3-10.
Chow LC. Development of self-setting calcium phosphate cements. The Centennial Memorial Issue of The Ceramic Society of Japan 1991;99:954-64.
Chow LC, Takagi S, Ishikawa K. in Hydroxyapatite and related materials. Brown PW, editor. Florida: CRC Press 1994;127.
Chow LC, Hirayama S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: Effect of applied pressure. J Biomed Mater Res (Appl Biomater) 2000;53:511-7 .
Chow LC, Takagi S. A natural bone cement-a laboratory novelty led to the development of revolutionary new biomaterials. Journal of research of the national institute of standards and technology 2001;106:1029-33.
Costantino PD, Friedman CD, Jones K, Chow LC, Pelzer HJ, Sisson GA. Hydroxyapatite cement I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg 1991;117:379-84.
Costantz B, Ison I, Fulmer M et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995;267:1796-9.
Costantz B, Barr B, Ison I et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res (Appl Biomater) 1998;43:451-61.
Cotten A, Boutry N, Cortet B, Assaker R, Demondin X, Leblond D, Chastanet P, Duquesnoy B, Deramond H. Percutaneous vertebroplasty: state of the art. Radiographics 1998;18:311-20
Dahl OE, Garvik LJ, Lyberg T. Toxic effects of methylmethacrylate monomer on leukocytes and endothelial cells in vitro. Acta Orthop Scand 1994;65(2):147-53
de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA. Chemistry of Calcium phosphate bioceramics. In: Handbook of Bioactive Ceramics Vol.II. edited by Yamamuro T, Hench LL. and Wilson J. CRC Press, Boca Raton, FL 1990;3-16.
de Groot K. Medical applications of calcium phosphate bioceramics. The Centennial Memorial Issue of The Ceramic Society of Japan 1991;99:943-53.
de Groot K. Bioceramics of CaP. Boca Raton, CRC Press 1983.
de Lange GL and Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 1989;10:121-5.
Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 1997;39:603-10.
Doremus RH. Review Bioceramics. J Mater Sci 1992;27:285-97.
Driessens FCM. and Verbeck RMH. Biominerals, CRC Press, Boca Ration, Boston 1990;37-59.
Driessens FCM, Boltong MG, Bermúdez O, Planell JA, Ginebra MP, Fernández E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci: Mater in Med 1994;5:164-70.
Eppley B. Development and clinical results of synthetic calcium phosphate materials in craniomaxillofacial surgery. Concepts and clinical applications of ionic cements Sept 8, 1999, Arcahon, France.
Fernández-Pardas JM, Clèries L, Martínez E, Sardin G, Esteve J, Morenza JL. Calcium phosphate coatings deposited by laser ablation at 355 nm under different temperatures and water vapour pressures. Appl Phys 2000; A71:37-42.
Frankenburg E, Goldstein S, Bauer T, Harris S, Poser R. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg 1998;80-A[8]:1112-24.
Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA. Hydroxyapatite cement II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 1991;117:385-9.
Friedman RJ, Black J, Galante JO, Jacobs JJ, Skinner HB. Current concepts in orthopaedic biomaterials and implant fixation. J Bone Joint Surg 1993;75A:1086-109.
Fridman C, Costantino P, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res (Appl Biomater) 1998;43:428-32.
Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reaction and compressive strengths of calcium phosphate cements. J Dent Res 1990;12:1852-6.
Fulmer MT, Brown PW. Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation. J Biomed Mater Res 1993;27:1095-102.
Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH. Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J Cryst Growth 1981;53:100-19.
Goodman S, Bauer T, Carter D et al. Norian SRS cement augmentation in hip fracture treatment. Clin Orthop Rel Res 1998;348:42-50.
Graves GA, Hentrich RL, Stain HG, Baijpai PK. Resorable ceramics implants in bioceramic. Engineering in Medicine. New York, Pergamon Press, 1972;91-115.
Hamanish C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting, bioactive, and biodegradable TTCP-DCPA apatite cement. J Biomed Mater Res 1996;32:383-9.
Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser CH, van Landuyt P. Augmentation of mechanical properties in osteoporotic vertebral bones-a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 2001;10(2):164-171
Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J 2001;10:205-13.
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early result. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 2000;9(5):445-50.
Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomd Mater Res Symp 1971;2:117-41.
Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc 1991;74:1487-510.
Hentrich RL, Graves GA, Baijpai PK. An evaluation of inert and resorable ceramics for future clinical application. Fall Meeting of Am Ceram Soc, Cleveland Ohio 1971.
Hong YC, Wang JT, Hong CY, Brown WE, Chow LC. The periapical tissue reactions to a calcium phosphate cement in the teeth of the monkeys. J Biomed Mater Res 1991;25:485-98.
Hulbert SF. Biomaterials-the case for ceramics. National Conference on Use of Ceramics in Surgical Implants. Clemson University Press 1969.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat 1982;8:131-40.
Hulbert SF, Bokros JC, Hench LL, Wilson J, Heimke G. Ceramics in clinical applications, past, present and future. In: Ceramics in Clinical Applications. edited by Vincenzini P. Elsevier, Amsterdam-oxford-New York-Tokyo 1987;3-27.
Hulbert SF. Bioactive ceramic-bone interface, Hench LL. Bioactive glasses and glass-ceramic: a perspective, and Kokubo T. Bonding mechanism of bioactive glass-ceramic A-W to living bone. In: Handbook of Bioactive Ceramics Vol.I. edited by Yamamuro T, Hench LL. and Wilson J. CRC Press, Boca Raton, FL 1990;3-6;7-24;41-50.
Imura A, Saito T, Ikegami S. Tetracalcium phosphate-based materials and processes for their preparation. US Patent No. 5569490, 1996.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 1995;29:1537-43.
Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: Composite with sodium alginate. Biomaterials 1995;16(7):527-32.
Ishikawa K, Takagi S, Chow LC, Ishikawa Y. Properties and mechanisms of fast-setting calcium phosphate cement. J Mater Sci Mater Med 1995;6:528-33.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Jarcho M, Salsburry RL, Thomas MB. Synthetic and fabrication of β-TCP ceramic for potential prosthesis application. Mater Sci 1979;14:142.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion J. Percutaneous polymethylmethacrylate vertobroplasty in the treatment of osteoporotic vertebral body compression fractures: technique aspects. Am J Neuroradiol 1997;18:1897-1904.
Kay MI, Young RA. Crystal structure of hydroxyapatite. Nature 1964;204:1050.
Kokubo T, Shigematsu M, Naashima Y, Tashiro M, Nakamura T, Yamamuro T, Higshi S. Apatite and wallastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res, Kyoto Univ 1982;60:260-8.
Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Mechanical properties of new type of apatite-containing glass-ceramics for prosthetic application. J Mater Sci 1985;20:2001-4.
Kokubo T. Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 1991;99:965-73.
Kurashina K, Kurita H, Kotani A, Takeuchi H, Hirano M. In vivo study of a calcium phosphate cement consisting of tricalcium phosphate/ dicalcium phosphate dibasic/ tetracalcium phosphate monoxide. Biomaterials 1997;18:147-51.
LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphate. Clin Orthop 2002;395:81-98.
Levitt GE, Grayton PH, Monroe EA. Forming methods for apatite prosthesis. J Biomed Mater Res 1969;3:683-5.
Lim T, Brebach GT, Renner SM, Kim WJ, Kim JG. An HS effect of a new calcium phosphate cement on the compression strength of vertebroplasty. Transactions of the 47th annual meeting of the Orthopaedic Research Society, San Francisco. 25-28 February 2001.
Liu C, Shen W, Gu Y, Hu L. Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res 1997;35:75-80.
Mears DC. Metals in medicine and surgery. Internal Metals Rev 1977;June:119-53.
Mermelstein L, Chow LC, Friedman C, Crisco J. The reinforcement of cancellous bone screws with calcium phosphate cement. J Orthop Trauma 1996;10:15-20.
Mermelstein L, McLain R, Yerbi S. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 1998;23:664-71.
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995;16:855-60.
Miyamoto Y, Toh T, Ishikawa K, Yuasa T, Nagayama M, Suzuki K. Effect of added NaHCO3 on the basic properties of apatite cement. J Biomed Mater Res 2001;54:311-9.
Monroe ZA, Votawa W, Base DB. New CaP ceramic material for bone and tooth implants. J Dent Res 1971;50:860-2.
Moore D, Maitra R, Farjo L, Graziano G, Goldstein S. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine; 1997;22:1696-705.
Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J Biomed Mater Res 1995;29:25-32.
Park JB, Lakes RS. Biomaterials: An Introduction. 2nd ed, New York, Plenum Press 1992.
Park JB. Biomaterials Science and Engineering. Plenum Press, New York and London 1985.
Peltier LE. The use of plaster of paris to fill defect in bone. Clin Orthop 1961;21:1.
Radin SR, Ducheyne P. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. Ⅱ. Precipitation. J Biomed Mater Res 1993;27:35-45.
Ravaglioli A. and Krajewski A. Bioceramics: Materials, Properties, Applications. Chapman & Hall Press, London 1992:44-5.
Ray RD, Ward Jr AA. A preliminary report on studies of basic CaP in bone replacement. Surg Form 1951;3:429-34.
Schildhauer TA, Bennett AP, Wright TM, Lane JM, O'Leary PF. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999;17:67-72
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandinm Supplem 1993;64:1-58.
Stanewich C, Swiontkowski M, Tencer A, Yetkinler D, Poser R. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthopaedic Res 1996;14:786-93.
Sugawara A, Nishiyama M, Kusama K, Moro I, Nishimura S, Kudo I, Chow LC, Takagi S. Histopathological reaction of calcium phosphate cement. Dent Mater J 1992;11:11-6.
TenHuisen KS, Brown PW. The formation of hydroxyapatite-ionomer cements at 38℃. J Dent Res 1994;3:598-606.
TenHuisen KS, Brown PW. The formation of hydroxyapatite-ionomer cements at 38℃. J Dent Res 1994;3:598-606.
TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2 O. J Biomed Mater Res 1997;36:233-41.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg 1999;81-A[2]:239-46.
Wang IC, Chern Lin JH, Ju CP, J. Transmission electron microscopic study of tetracalcium phosphate surface-treated in diammonium hydrogen phosphate solution. Materials Transactions 2004;Submitted.
Welch JH. and Gutt W. High temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc 1961;4442-4.
Weill A, Chiras J, Simon JM, Rose M. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996;199:241-7.
Wroblewski BM. 15~21 Year Result of the Charnley Low Friction Arthroplasty. Clin Orthop 1986;211:30.
Xie L, Monroe EA. Calcium phosphate dental cements. Mat Res Soc Symp Proc 1991;179:25-39.
Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 2002;23:1091-101.
Zhou J, Zhang X, Chen J, Zeng S, de Groot K. High temperature characteristics of synthetic hydroxyapatite. J Mat Sci:Mat in Med 1993;4:83-5.
陳文正, 氫氧基磷灰石複合骨水泥基本性質及植入結果研究, 2002, 國立成功大學材料科學及工程學系博士論文
經濟部陶瓷技術手冊Chap.31

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw