進階搜尋


 
系統識別號 U0026-0812200911262328
論文名稱(中文) 含氮複合基質厭氧產氫醱酵反應特性之研究
論文名稱(英文) Study on Characteristics of the Hydrogen Fermentation Utilizing Multiple Substrates Containing Nitrogen Compounds
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 93
學期 2
出版年 94
研究生(中文) 白明德
研究生(英文) Ming-Der Bai
學號 p5888105
學位類別 博士
語文別 英文
論文頁數 194頁
口試委員 口試委員-曾怡禎
口試委員-高銘木
口試委員-張祖恩
口試委員-張憲彰
口試委員-李季眉
指導教授-鄭幸雄
召集委員-林秋裕
口試委員-歐陽橋暉
口試委員-曾四恭
中文關鍵字 生物電化學  生物活性  影響因子  廢棄活性污泥  複合基質  蛋白質  厭氧生物產氫 
英文關鍵字 bioelectrochemistry  affecting factor  bioactivity  waste activated sludge  multiple substrate  protein  anaerobic hydrogen-producing processes 
學科別分類
中文摘要   本研究涵蓋厭氧生物對醣類、蛋白質、複合基質與廢棄活性污泥的產氫機制及影響因子研究。探討氫醱酵過程產氫、耗氫、生物增長與產物累積現像。蛋白質基質批次醱酵過程有明顯的產氫與耗氫現象,此現象也同樣在複合基質與與廢棄活性污泥的氫醱酵中發現。而各類基質氫醱酵的主要副產物也多是短鏈脂肪酸。葡萄糖、水解蛋白質、複合基質與廢棄活性污泥的產氫潛力各自為每克COD基質產生10.6、0.67、7.1與0.54 毫莫耳。

  由複合基質產氫的研究中得知,基質組成分明顯影響生物產氫效率,最佳的產氫基質組合為60%的葡萄糖加40%水解蛋白質或80%的澱粉加20%水解蛋白質。水解蛋白質主要影響產氫生物生長與環境酸鹼值。足夠的蛋白質含量有助於生物生長,也促進生物產氫效率。而要維持穩定的中性酸鹼值環境所添加的大量磷酸緩衝液,並不利於生物產氫。含40%水解蛋白質複合基質的氫醱酵中,添加50 mM的磷酸鹽產氫量比添加10 mM產氫量少了33%。除了基質組成與鹽類濃度外,氫分壓對於生物產氫有明顯的影響。研究中發現,缺乏良好的質傳條件,液相中的溶氫可能比氣相的氫分壓高出數十倍甚至上百倍,氫分壓可能造成的影響遠比自氣相中觀察到的來的嚴重。氫分壓不但抑制產氫,更可能引發蛋白質有機物嚴重的耗氫分解。而本研究採用的振盪培養與薄膜分離技術都能明顯降低氫分壓危害。增加薄膜分離模組快速移除生物產氣,分別有效提昇生物產氫速率與產氫量達15%與10%的幅度。

  本研究應用氫醱酵這項新穎的技術於廢棄活性污泥厭氧處理的預醱酵處理,將大分子的有機物降解為小分子。降解1 g 經加鹼前處理的廢棄活性污泥可產生0.54 mmole的氫氣,22 mg的乙酸及53 mg氨氮。在氫醱酵後可量測的COD及TKN部份均呈現增加的趨勢,顯示氫醱酵有效降解廢棄活性污泥微小分子型態有機物。廢棄活性污泥的氫醱酵產氫特性與水解蛋白質相似,在氫醱酵反應中除了產氫也有明顯的耗氫現象。由本研究的結果顯示,氫醱酵中的水解酵素(protease及amylase)活性與氫氣的累積動態一致,酵素活性的最大值出現於最大累積產氫時期附近。產氫量隨著amylase的添加而增加,但是卻隨著protease的添加而減少。因為在產氫反應中碳水化合物是一項良好的電子供應者,可供氫氣的生成;蛋白質可能是良好的電子接受者,故會促進氫氣的消耗。

  本研究啟動並長期操作一厭氧氫醱酵生物反應器,並探討不同水力停留時間(HRT)下,氫氣生成情形、微生物生長及複合基質所扮演角色。以20,000 mg/L葡萄糖及水解蛋白質(3:2(w/w))作為基質,溫度控制於35℃,進行五試程水力停留時間分別為12、8、6、4及2小時。水力停留時間長於2小時的試程,產氫表現及微生物生長皆可維持一穩定狀態。當水力停留時間為6小時,系統表現最佳的微生物生長及最大的氫氣產率5.6 mmole H2/g glucose as COD。在不同水力停留時間下,葡萄糖主要利用於生產氫氣且可降解完全,蛋白質所扮演的角色則不盡相同,在較長的水力停留時間下,蛋白質被利用於醱酵及進行生物體合成,隨著水力停留時間縮短,其作用主要轉為生物質體合成用,或仍以有機氮的形式殘留,只有少部分被代謝至無機的氨氮形式。

  產氫微生物代謝途徑易於改變,且變化迅速,常有微生物生長快速但無氫氣產生的狀況,僅以傳統水質指標無法迅速掌握足夠的生物資訊。本研究應用生物電化學技術開發一先進的生物活性量測法應用於厭氧生物氫醱酵程序的活性監測。以鐵氰化物作為電子接受者,接收產氫微生物氧化葡萄糖後產生的電子,再利用電化學反應,在電極表面氧化亞鐵氰化物攫取電子,電極攫取電子的速率與亞鐵氰化物成正比,而藉由觀察亞鐵氰化物的增加速率即可判斷產氫微生物活性。藉由先進的生物電化學生物活性量測法,針對一穩定操作的厭氧生物氫醱酵槽的產氫微生物進行活性評估、異常操作模擬等。結果證實本技術可以在數分鐘內快速地求得生物活性,可提供較傳統操作指標更快更多生物活性資訊,有助於產氫程序的操作。

  在生物反應槽的操作中,生物活性的量測可以提供細胞生長,基質利用等等的資訊,因此生物活性的量測對於生物程序的操作相當重要。本研究使用生物電化學的方法,可以在數十秒至數分鐘之內量測出生物活性,可以快速且即時掌握生物活性,進而對生物程序的操作做一即時的預警系統,可以正確評估槽體受損狀況,進而求其回復因應對策。針對厭氧產氫醱酵槽作測試,在此反應槽遭遇停止進流後,分別進行兩小時、五小時、以及長時間等不同停止進流時間下的量測及回復狀況評估。藉由生物電化學方法,可以正確說明槽中生物活性狀況,同時藉由其他水質數據的比較,可以就醱酵槽內的生化機制改變作一更完整的描述。並針對不同狀況停止進流不穩定的操作,用以擬定回復策略。

英文摘要  This research includes to investigate the characteristic, mechanism and influential factors of hydrogen fermentation in carbohydrates, protein multiple substrates and waste activated sludge (WAS). The hydrogen production, hydrogen consumption, cell growth and products accumulation were discussed. The significant hydrogen consumption following hydrogen production was observed during the fermentation of peptone, multiple substrate and WAS. Their main fermentative byproducts were fatty acids, such as acetate and butyrate that were similar to carbohydrate’s fermentative products. The hydrogen yields of glucose, peptone, multiple substrates and WAS were 10.6、0.67、7.1 and 0.54 mmole/g-COD.

 According to the investigation on hydrogen fermentation of multiple substrates, the component of multiple substrates influenced the hydrogen yield significantly. The optimal components for hydrogen production were 60% glucose plus 40% peptone or 80% starch plus 20% peptone. In the fermentation of the optimal substrates, peptone was provided as nutrient for growth and help for maintaining neutral pH. Sufficient protein made the good cell growth and more stable pH condition. However, the extra addition of phosphate buffer for neutralizing pH was not advantage for hydrogen yield. The hydrogen yield in the fermentation with 50 mM phosphate was 33% less than 10 mM phosphate. Besides substrate component and ion strength, hydrogen partial pressure influenced hydrogen production significantly. High level of hydrogen partial pressure causes a little inhibition on hydrogen production and serious hydrogen consumption. The actually dissolved hydrogen partial pressure may one hundred times higher than the apparent partial pressure observed in headspace. Dissolved hydrogen partial pressure depending on hydrogen mass transfer controls the hydrogen yield and productivity. In order to remove the dissolved hydrogen immediately, a good mass transfer system is required. In this study, membrane separation module was used to remove biogas and improved the hydrogen productivity and yield by 15% and 10%, respectively.

 This work introduces the novel hydrogen fermentation process into the first stage of anaerobic digestion for treating WAS. Hydrogen fermentation was introduced to degrade large molecular organic matter and to recover hydrogen energy. One gram COD of the waste sludge hydrolysate, which was prepared by pre-treating the WAS coming from the foodstuff plane or fructose manufactory by base, could be fermented and produced approximately 0.54 mmole of H2 gas, 22 mg of acetate and 53 mg of ammonia nitrogen. After fermenting, the detectable COD and TKN increased. The fermenting characteristics are similar to those of the fermentation of peptone. Both hydrogen production and consumption were observed in the fermentation. The hydrogen production depends on the activities of amylase and protease, the starch and protein hydrolysis enzymes, because the hydrolysis is the rate-limiting step of the biodegradation. The variation in the enzymatic activity during fermentation followed the hydrogen accumulation. The peak enzymatic activities were observed near the peak of hydrogen productivity. The hydrogen production was increased by adding amylase, but decreased by adding protease, because carbohydrate is a good electron donor for producing hydrogen, whereas protein as an probable electron acceptor for consuming hydrogen.

 Multiple substrates, containing glucose and peptone, were fed into an anaerobic hydrogen fermentative continuous-flow stirred tank reactor (CSTR). The CSTR was operated at various hydraulic retention times (HRT) to examine the effects of HRT on hydrogen production and cell growth, and the role played by peptone. Maximum hydrogen yield and biomass concentration were obtained at 5.6 mmole H2/g COD and 3470 mg-MLVSS/L respectively following 6 hours of HRT. Hydrogen production and cell growth were maintained stable when HRT was longer than 2 hours. The role of protein changed with HRT. Protein was fermented and used in biosynthesis when HRT was long. However, most of the protein was utilized in biosynthesis or was maintained in its organic nitrogen form, and only a slight amount of it was fermented into the ammonia when HRT was short.

 To monitor the bioactivity change in hydrogen fermentors, this work presented a novel bioelectrochemical method equipped with a polyviologen modified glassy carbon as a working electrode and with ferricyanide as an electron mediator. Experimental results demonstrated that the ferricyanide can transfer electrons from hydrogen producing bacteria cells to electrode without significant inhibition on cell growth. To protect the electrode from pollution by protein and bacteria during bioassay, polyviologen film was applied to modify the working electrode, and stabilized the responding current compared to the use of bare electrode. The mediated amperometric bioassay provided the bioactivity information for indicating the statue of the fermentor and helping draw up the operation strategy when the fermentor was operated under abnormal conditions, including stop-feeding and re-feeding. The results of bioactivity monitoring suggested an interesting phenomenon that the activity of hydrogen producing bacteria transiently increased during the unsteady period and then decreased.

 According to the different damage on bioactivity caused by starvation, the restoration strategy includes three set. First one is fermentor suffering from short-term starvation (< 2 hours) that could be restored by direct re-feeding with full loading. Secondly, fermentor suffering from mid-term starvation (5.5 hours) should be restored by partial loading re-feeding strategy to improve bioactivity and to avoid washout, and then the full loading applied. The last one is fermentor suffering from long-term starvation (> 7 days) that should be re-startup by batch culture, half-loading and then full-loading for inducing the spore sprouting, improving the bioactivity and then stable operating.
論文目次 摘 要 I
Abstract III
Contents VII
List of Figures IX
List of Tables XI

Chapter 1 Introduction 1-1

Chapter 2 Literature Reviews 2-1
2-1. Hydrogen economy 2-1
2-2. Hydrogen production technologies 2-11
2-3. Microbiology of biohydrogen production 2-18
2-4. Biochemistry of hydrogen fermentation 2-27
2-5. Effects on hydrogen fermentation 2-33
2-6. Process technologies 2-41
2-7. Bioelectrochemical methods for monitoring
bioactivity 2-44

Chapter 3 Material and Methods 3-1
3-1. Biochemical hydrogen potential test (BHP
test) 3-1
3-2 Transfer culture for acclimatizing
hydrogen producing bacteria 3-4
3-3. Hydrogen fermentation in continuos-flow
stirred tank reactor (CSTR) 3-5
3-4 Analysis of hydrolyzing enzymatic activity 3-6

Chapter 4.Hydrogen Fermentation of Protein Compound 4-1
4-1 Hydrogen producing and consuming during
the fermentation 4-2
4-2 Accumulation and composition of
fermentative products from peptone 4-4
4-3 Proposed mechanism of biohydrogen
production with degradation of peptone 4-9
4-4 Summary 4-12

Chapter 5 Hydrogen Fermentation of Multiple Substrate Composed of Carbohydrate and Protein 5-1
5-1 The characteristic of the hydrogen
fermentation of multiple substrates 5-1
5-2 Effects of protein/carbohydrate ratio on
hydrogen fermentation 5-4
5-3 Inhibiting effect on hydrogen production
caused by hydrogen partial pressure 5-18
5-4 Effects of S0/X0 on hydrogen fermentation 5-33
5-5 Effects of salts, sodium chloride
and sodium phosphate, on hydrogen
fermentation 5-37

Chapter 6 Feasibility-Study of Hydrogen Fermentation Applied on Waste Sludge Treatment 6-1
6-1. Hydrogen fermentation using pretreated
was as substrate and as screened seed
bacteria 6-2
6-2. Acclimating hydrogen producing bacteria
degrading was hydrolysate by transfer
culture 6-9
6-3. Enzymatic activity in the fermentation
of sludge hydrolysate 6-13
6-4 Summary 6-17

Chapter 7 Operation of Anaerobic Hydrogen Fermentor and Monitoring Bioactivity of Hydrogen Producing Bacteria 7-1
7-1. Effects of HRT on hydrogen fermentor 7-2
7-2. Development of the bioelectrochemical
method for rapidly determining bioactivity 7-6
7-3. Stop-feeding and re-feeding: scenario
of a hydrogen fermentor 7-19

Chapter 8 Conclusions and Suggestions 8-1

References 9-1

參考文獻 Andreesen, J.R., Bahl, H. and Gottschalk, G. (1989) Introduction to physiology and biochemistry of the genus Clostridium. In Clostridia, 27-62. eds. Minton, N.P. and Clarke, D.J. Plenum Press, New York, 1989
APHA. Standard methods for the examination of water and wastewater, 19th ed. New York, USA: American Public Health Association, 1995.
Árnason, B. and Sigfússon, T. I. (2000) Iceland- a future hydrogen economy. International Journal of Hydrogen Energy 25(5), 389-394
Assobhei, O., Elkanouni, A., Ismaili, M., Loutfi, M. and Petitdemange, H. (1998) Effect of acetic and butyric acids on the stability of solvent and spore formation by Clostridium acetobutylicum ATCC 824 during repeated subculturing. Journal of Fermentation and bioengineering 85(2), 209-212
Bahl, H., Andersch, W. and Gottschalk, G. (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. European journal of applied microbiology and biotechnology 15, 201-205.
Bai, M.D., Cheng, S.S. and Tseng, I.C. (2001) Biohydrogen produced due to peptone degradation by pretreated seed sludge. 1st IWA Asia-Pacific Regional Conference Proceeding, pp. 315-320.
Barreto, L., Makihira, A. and Riahi, K. (2002) The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy 28 (3), 267-284.
Bergey's Manual of Systematic Bacteriology (1989). vol.3, 2nd edn, Staley, J. T. and Bryant, M. P. (ed), Bergey’s Manual Trust and Williams & Wilkins, Baltimore.
Bernfeld, P.(1988). Amylase, α and β. In: Methods in Enzymology, Colowick, S. and Kalpan, N. O., vol 160, pp. 94-97.
Bolzonella, D., Pavan, P., Battistoni, P. and Cecchi, F. (2005) Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochemistry 40(3-4), 1453-1460.
Brosseau, J.D., Yan, J.Y., and Lo, K.V. (1986) The relationship between hydrogen gas and butanol production by Clostridium saccharoperbutylacetonicum. Biotechnology and Bioengineering 28(3), 305–310.
Cammack, R. (1999) Bioinorganic chemistry: Hydrogenase sophistication. Nature 397, 214 - 215.
Chang S.S., Chen, S.D., Tseng, I.C., Lin, C.Y., Lee, C.M., Lin, H.I., Lin, M.R. and Chen, S.T. (2003) Biohydrogen Production Mechanisms and Processes Application on Multiple Substrates. Proceedings of IWA Asia-Pacific Regional Conference 2003, Bangkok, Thailand.
Chang, F.Y. and Lin, C.Y. (2003) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy 29(1), 33-39.
Chang, H.C., M. Osawa, T. Matsue, and I. Uchida (1991) A Novel Polyviologen Electrode Fabricated by Electrochemical Crosslinking. Journal of the Chemical Society, Chemical Communications 611-612.
Chang, J.S., Lee, K.S. and Lin, P.J. (2002) Biohydrogen production with biofilm processes. International Journal of Hydrogen Energy 27(11-12), 1167-1174.
Chang, T.C., Wu, Y.C, Ouyang, C.F. and Hoa, O.J. (1989) Anaerobic sludge digestion using mesophilic-thermophilic phase separation. Journal of Chemical Technology and Biotechnology. 45, 85-96.
Chen, C.-C., Lin, C.-Y., and Chang, J.-S.(2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Applied Microbiology and Biotechnology 57(1-2), 56-64.
Chen, C.K. and Blaschek, H.P. (1998) Effect of Acetate on Molecular and Physiological Aspects of Clostridium beijerinckii NCIMB 8052 Solvent Production and Strain Degeneration. Applied and Environmental Microbiology 65(2), 499-505.
Cheng, S.S., Chen, S.D., Tseng, I.C., Lin, C.Y., Lee, C.M., Lin, H.I., Lin, M.R. and Chen, S.T. (2003) Biohydrogen Production Mechanisms and Processes Application on Multiple Substrates. Proceedings of IWA Asia-Pacific Regional Conference 2003, Bangkok, Thailand.
Cheng, S. S., Tseng, I. C. and Bai, M. D. (1999) Behavior Study of Anaerobic Biological Hydrogenation from Different Organic Substrates with Selected Hydrogen Producing Bacteria, 7th IAWQ Asia-Pacific Regional Conference Proceeding, pp.759-764.
Chien, C.H., Tseng, I.C., Chang, C.I. and Liu, I.F. (2003) Community of anaerobic hydrogen production reactor. Proceedings of 28th Wastewater Treatment Technology Conference,Taiwan. (in Chinese)
Chin, H.L., Chen, Z.S. and Chou, C. P. (2003) Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen Production. Biotechnology Progress 19(2), 383-388.
Chung, K.T. (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appied and Environmental Microbiology 31, 342-348.
Cohen, A., Distel, B., van Deursen, A., Breure, A.M. and van Andel, J.G. (1985) Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: Changes induced by discontinuous or low-rate feed supply. Antonie Van Leeuwenhoek 51(2), 179-192.
Cole, H. and George, A. (1992) Provision of the world energy need. Energy World 199, 15-20
Colin, T., Bories, A., Lavigne, C. and Moulin, G. (2001) Effects of Acetate and Butyrate During Glycerol Fermentation by Clostridium butyricum. Current Microbiology 43(4), 238–243.
Collet, C., Adler, N., Schwitzguébel, J.P. and Péringer, P. (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy 29(14), 1479-1485.
Dabrock, B., Bahl, H. and Gottschalk, G. (1992) Parameters Affecting Solvent Production by Clostridium pasteurianum. Applied and Environmental Microbiology 58(4), 12331239.
Das, D. and Veziroglu, T. N. (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26(1), 13-28
Desvaux, M., Guedon, E. and Petitdemange, H. (2001) Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology (Reading, England) 147, 1461-1471.
Duangmanee, T., Padmasiri, S., Simmons, J.J., Raskin, L., Sung, S. (2002). Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Ertl, P., Robello, E., Battaglini, F. and Mikkelsen, S. R.(2000) Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogene. Analytical Chemistry 72(20), 4957-4964
European Wind Energy Association (2004) Hydrogen economy is dirty without renewables. Fuel Cells Bulletin 2003(6), 4.
Evans, M.R., Jordinson, G.M, Rawson, D.M. and Rogerson, J.G. (1998) Biosensors for the measurement of toxicity of wastewaters to activated sludge. Pesticide Science 54(4), 447-452.
Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K. and Ohmiya, K. (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. Journal of Bioscience and Bioengineering 91(4), 339-343.
Fang, H. H. P., Zhang, T. and Liu, H. (2002). Microbial diversity of a mesophilic hydrogen-producing sludge. Applied Microbiology and Biotechnology 58(1), 112-118.
Fang, H.H.P. and Liu, H. (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 82(1), 87-93
Farré, M. and Barceló, D. (2001) Characterization of wastewater toxicity by means of a whole-cell bacterial biosensor, using Pseudomonas putida, in conjunction with chemical analysis. Fresenius' Journal of Analytical Chemistry 371(4), 467-473.
Farré, M. and Barceló, D. (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends in Analytical Chemistry 22, 299-310
Ghosh, S. (1991) Pilot-scale demonstration of 2-phase anaerobic-digestion of activated-sludge. Water Science and Technology 23, 1179-1188.
Ginkel, S. V., Sung, S. and Lay, J.J. (2001) Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology 35(24), 4726-4730
Girbal, L., Croux, C. and Vasconcelos, I. and Soucaille, P. (1995) Regulation of metabolism shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17, 287-297
Han, S.K. and Shin, H.S. (2004) Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy 29(6), 569-577.
Hart, D., Freund, P. and Smith, A. (1999) Hydrogen - Today and Tomorrow, IEA Greenhouse Gas R&D Programme. Available at: http://www.ieagreen.org.uk/h2rep.htm
Hawkes, F.R., Dinsdale, R., Hawkes, D.L. and Hussy, I. (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy 27(11-12), 1339-1347.
Heyndrickx, M., Vansteenbeeck, A., De Vos, P. and De Ley, J. (1986) Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridium butyricum LMG 1213t1. Systematic and Applied Microbiology 8(3), 239-244.
Hobson, N.S., Tothill, I. and Turner, A.P.F. (1996) Microbial detection. Biosensors and Bioelectronics 11(5), 455-477.
Huang, Y.L., Mann, K., Novak, J.M. and Yang, S.T. (1998) Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnology Progress 14(5), 800-806.
Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnology and Bioengineering 84(6), 619-626.
Industry Canada (2003) Canadian Fuel Cell Commercialization Roadmap. Available at: http://strategis.ic.gc.ca/electrical
Ito, Y., Yamazaki, S., Kano, K. and Ikeda, T. (2002) Escherichia coli and its application in a mediated amperometric glucose sensor. Biosensors and Bioelectronics 17(11-12), 993 - 998.
Johnston, B., Mayo, M.C. and Khare, A. (2005) Hydrogen: the energy source for the 21st century. Technovation 25(6), 569-585.
Jones, D.T. and Woods, D.R. (1986) Acetone-butanol fermentation revisited. Microbiological Reviews 50(4), 484-524
Kashket, E.R. and Cao, Z.Y. (1995) Clostridial Strain Degeneration. FEMS Microbiology Reviews 17, 307-315
Kataoka, N., Miya, A. and Kiriyama, K. (1997) Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Science and Technology 36, 41-47.
Krahn, E., Schneider, K. and Muller, A. (1996) Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative "iron-only" nitrogenase of Rhodobacter capsulatus hup- mutants. Applied Microbiology and Biotechnology 46(3) 285-290.
Kumar, N. and Das, D. (2000a) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry 35, 589–593
Kumar, N. and Das, D. (2000b) Production and purification of α-amylase from hydrogen producing Enterobacter cloacae IIT-BT 08. Bioprocess and Biosystems Engineering 23(2), 205-208.
Kumar, N., Ghosh, A. and Das, D. (2001) Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnology Letters 23(7) 537-541.
Lakeman, J.B. and Browning, D.J. (2001) Global Statues of Hydrogen Research. Available: http://test.netgates.co.uk/nre/pdf/F0300239.pdf
Lawrence, N.S., Deo, R.P. and Wang, J. (2004) Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Analytica Chimica Acta 517(1-2), 131-137.
Lay, J. J., (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering 68(3), 270-277
Lay, J.J. (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering 74(4). 280-287
Lay, J.J., Lee, Y.J. and Noike, T. (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water research 33(11), 2579-2586
Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J. and Chang, J.S. (2003) H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnology Letters 25, 133-138.
Lee, Y. J., Miyahara, T. and Noike, T. (2001) Effect of iron concentration on hydrogen fermentation. Bioresource Technology 80(3), 227-231,
Levin, D.B., Pitt, L. and Love, M. (2004) Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29(2) 173-185.
Liang, T.M., Cheng, S.S. and Wu, K.L. (2002). Behavioral study on hydrogen fermentaton reactor installed with silicone rubber membrane. International Journal of Hydrogen Energy, 27(11/12). 1157-1166.
Liang, T.M., Cheng, S.S., Chang, S.M., Hsiao, C.J. (2003) Using a microfiltration membrane to stabilize anaerobic bioreactors in producing hydrogen gas. The 2003 IWA ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, 19-23, October, Bangkok, Thailand.
Lin, C.Y. and Lay, C.H. (2003) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29(1), 41-45.
Liu, H. and Fang, H.H.P. (2002) Hydrogen production from wastewater by acidogenic granular sludge. Water Science and Technology 47(1), 163-168
Liu, H., Cheng, S. and Logan, B.E. (2005) Production of electricity from acetate or butyrate in a single chamber microbial fuel cell. Environvmental Science and Technollogy 39(2), 658-662.
Liu, Y., Chen G.H., Rols J.L. (1999) A kinetic model incorporating energy spilling for substrate removal in substrate-sufficient batch culture of activated sludge. Applied Microbiology and Biotechnology 52(5), 647–651.
Lovitt, R.W., Shen, G.J. and Zeikus, J.G. (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. Journal of Bacteriology 170(6) 2809-2815
Low, E.W. and Chase, H.A. (1999) Reducing production of excess biomass during wastewater treatment. Water Research 33(5), 1119-1132.
Majizat, A., Mitsunori, Y., Mitsunori, W., Michimasa, N. and Junichiro, M. (1997) Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Science and Technology 36(6-7), 279-286.
McCarty P. L. (1972) Stoichiometry of biological reaction, Int. Conf. Toward a unified concept of biological waste treatment design, Atlanta Ga.
Mitsugi, C., Harumi, A. and Kenzo, F. (1998). WE-NET Japanese hydrogen program. International Journal of Hydrogen Energy 23, 159-165.
Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L. and Noike, T. (2000) Enhancement of hydrogen production from glucose by nitrogen gas Sparging. Bioresource Technology 73(1), 59-65
Moat, A.G., Foster, J.W. and Spector, M.P. (2002) Microbial Stress Responses, Microbial physiology 4th ed, A John Wiley & Sons, Inc., Publication
Muñoz-Centeno, M.C., Ruiz, M.T., Paneque, A. and Cejudo, F.J. (1996) Posttranslational regulation of nitrogenase activity by fixed nitrogen in Azotobacter chroococcum. Biochimica et Biophysica Acta 1291 (1), 67-74
Muradov, N.Z. and Veziroglu, T.N. (2005) From hydrocarbon to hydrogen–carbon to hydrogen economy. International Journal of Hydrogen Energy 30(3), 225-237.
Nandi, R., Dey, S, and Sengupta, S. (2001) Thiosulphate improves yield of hydrogen production from glucose by the immobilized formate hydrogenlyase system of Escherichia coli. Biotechnology and Bioengineering 75(4), 492-4.
Nath K. and Das D. (2003) Hydrogen from biomass. Current Science 85(3), 265-271.
Noike, T., Takabatake, H., Mizuno, O. and Ohba, M. (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27(11-12), 1367-1371.
Novelli, A., Ottonello, F., Converti, A., Lodi, A., Rovatti, M. and Delborghi, M. (1995) Alkaline-hydrolysis for the treatment of the organic fraction of municipal solid-wastes and sludges. Chemical and Biochemical Engineering Quarterly 9(4), 195-199.
Oh, Y.K., Seol, E.H., Kim, J.R. and Park, S. (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy 28(12), 1353-1359.
Owen, W.F., Stuckey, D.C., Herly, Jr. J.B. Young, L.Y. and McCarty P.L. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research 13, 485-492。
Pauss, A., Samson, R. and Guiot, S. (1990) Continuous measurement of dissolved H2 in an anaerobic reactor using a new Hydrogen/Air fuel cell detector. Biotechnology and Bioengineering 35, 492-501.
Peters, J.W. (1999) Structure and mechanism of iron-only hydrogenases. Current Opinion in Structural Biology 9(6), 670-676.
Rachman, A.M., Yoshinori, F., Yutaka, N., Toshihide, K. and Naomichi, N. (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. Journal of Fermentation and Bioengineering. 83(4), 358-363
Roller, S.D., Benetto, H.P., Delaney, G.M., Mason, J.R., Stirling, J.L. and Thurston (1984) Electron-transfer coupling in microbial fuel cell: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. Journal of Chemical Technology and Biotechnology 34B, 3-12.
Shih, T.Y., Jian, C.H., Liu, I.F., Tseng, I.C. (2002) Isolation and physiological characteristics of anaerobic hydrogen producing bacteria. Proceedings of the Conference of 27th Wastewater Treatment Technology. Taiwan. (In Chinese)
Singh, S. P., S. C. Srivastava and K. D. Pandey (1994) Hydrogen production by Rhodopseudomonas at the expense of vegetable starch, sugarcane juice and whey. International Journal of Hydrogen Energy 19(5), 437-440.
Skládal, P., Morozova, N.O. and Reshetilov, A.N. (2002) Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria. Biosensors and Bioelectronics 17 (10), 867-873.
Smith, B.E., Durrant, M.C., Fairhurst, S.A., Gormal, C.A., Grönberg, K.L.C., Henderson, R.A., Ibrahim, S.K., Le Gall, T. and Pickett, C.J.a (1999) Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coordination Chemistry Reviews 185-186, 669-687.
Taguchi, F., Chang, J.D., Takiguchi, S. and Morimoto, M. (1992) Efficient hydrogen production from starch by a bacterium isolated from termites. Journal of Fermentation and Bioengineering. 73, 244-245.
Taguchi, F., Hasegawa, K., Tatsuo S.T. and Hara, K. (1996) Simultaneous Production of Xylanase and Hydrogen Using Xylan in Batch Culture of Clostridium sp. Strain X53. Journal of Fermentation and Bioengineering 81(2), 178-180
Taguchi, F., Mizukami, N., Yamada, K., Hasegawa, K. and Saitotaki, T. (1995). Direct conversion of cellulosic materials to hydrogen by Clostridium sp strain no-2. Enzyme and Microbial Technology 17(2), 147-150.
Taguchi, F., Yamada, K., Hasegawa, K. and Taki-Saito T. (1996) Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. Journal of Fermetation and Bioengineering 82(1), 80-83
Takiguchi, N., Kishino, M., Kuroda, A., Kato, J. and Ohtake, H. (2004) A laboratory-scale test of anaerobic digestion and methane production after phosphorus recovery from waste activated sludge. Journal of Bioscience and Bioengineering 97(6) 365-368.
Tanaka, S., Kobayashi, T., Kamiyama, K. and Bildan, M. (1997) Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge. Water Science and Technology 35(8), 209-215.
Tanisho, S. and Ishiwata, Y. (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. International Journal of Hydrogen Energy 20(7), 541-545.
Taranova, L., Semenchuk, I., Manolov, T., Iliasov, P. and Reshetilov, A. (2002) Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosensors and Bioelectronics 17, 635 - 640.
Tatsumi, H., Kano,K. and Ikeda T. (2000) Kinetic analysis of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors. The Journal of Physical Chemistry:B 104(50), 12079-12083.
Tatsumi, H., Takagi, K., Fujita, M., Kano, K. and Ikeda T. (1999) Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Analytical Chemistry 71(9), 1753-1759.
Thauer, R.K., Jungermann, K. and Decker K.(1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100-180.
Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y. (2001) Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Applied Microbiology and Biotechnology 57(1-2), 65-73.
Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y. (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology 57(5-6), 555-562.
Ueno, Y., Kawai, T., Sato, S., Otsuka, S. and Morimoto, M. (1995) Biological production in hidrogen from cellulose by natural anaerobic microflora. Journal of Fermentation and Bioengineering 79(4), 395-397
Ueno, Y., Otsuka, S. and Morimoto, M. (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering 82(2),.194-197
Wakayama, T. and Miyake, J. (2001) Hydrogen from Biomass,” in Biohydrogen II, Miyake, J., Matsunaga T. and Pietro, A.S. eds., Amaterdam: Pergamom, Elsevier., pp. 41-51 (2001).
Walter, H. E. (1983). Method with Haemoglobin, Casein and Azocoll as Substrate. In: Methods of enzymatic analysis, H. U. Bergmeyer (ed.), vol 5, 3rd edn, Weinheim Deerfield Beach, Florida Basel, pp. 270-277.
Wang Y.F., Cheng S.S., Tseng I.C., Bai M.D. and Hsiao C.J. (2003) Comparison of microbial diversity of hydrogen fermentation bioreactors degrading multiple substrates (glucose and peptone). IWA Conference on Environmental Biotechnology. Johor Bahru, Malaysia. (Oral presentation)
Wang, Q., Kuninobo, M., Kakimoto, K., Ogawa, H.I.and Kato, Y. (1999) Upgrading of anaerobic digestion of activated sludge by ultrasonic pretreatment. Bioresource Technology 68(3), 309-313.
White, D. (2000) The Physiology and Biochemistry of Prokaryotes. ed. White, D. Oxford University Press, Inc.
Wu, S.Y., Lin, C.N., and Chang, J.S. (2003) Hydrogen production with immobilized sewage sludge in three-phase fluidized beds. Biotechnology Progress 19(3), 828-832
Wu, S.Y., Lin, C.N., Lee, K.S., Lin, P.J., and Chang, J.S. (2002) Microbial hydrogen production with immobilized anaerobic cultures. Biotechnology Progress 18(5), 921-926.
Yokoi, H., Maki, R., Hirose, J. and Hayashi, S. (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass and Bioenergy 22(5), 389-395.
Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S. and Takasaki, Y. (1995) Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes Strain HO-39. Journal of Fermentation and Bioengineering, 80(6), 571-574
Zhang, T., Liu, H. and Fang, H.H.P. (2003) Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69(2), 149-156.
Zhu, H., Suzuki, T., Tsygankov, A.A., Asada Y. and Miyake, J. (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy 24(4), 295-383.
Zwietering M. H., Jongenburger I.,Rombouts F. M., and Van’t Riet K., (1990) Modeling of the bacteria growth curve. Applied and Environmental Microbiology, 56(6), 1875-1881.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2008-05-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2008-05-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw