進階搜尋


 
系統識別號 U0026-0812200911255767
論文名稱(中文) 在apoE基因剔除小鼠動脈粥狀硬化發展過程中主動脈之肌凝蛋白去磷酸酶表現量的變化
論文名稱(英文) The expression of aortic myosin phosphatase during atherosclerosis progression in apoE-knockout mice
校院名稱 成功大學
系所名稱(中) 細胞生物及解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 93
學期 1
出版年 94
研究生(中文) 鄭融鍵
研究生(英文) Jung-Chien Cheng
電子信箱 lcw217@ms2.hinet.net
學號 t9691402
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 口試委員-施桂月
口試委員-陳麗玉
召集委員-任卓穎
指導教授-江美治
中文關鍵字 動脈粥狀硬化  肌凝蛋白去凝酸酶 
英文關鍵字 atherosclerosis  myosin phosphatase 
學科別分類
中文摘要   血管平滑肌的不正常收縮是心血管疾病,包括高血壓、血管痙攣和動脈粥狀硬化的重要指標。肌凝蛋白去磷酸酶乃調控平滑肌收縮的一個主要酵素,是由三個次單元所組成,包括具有催化作用的PP1、分子量為130 kDa,可與肌凝蛋白結合的調節次單元MBS、和分子量為20 kDa,功能尚不明的次單元。近年來的研究指出,肌凝蛋白去磷酸酶的活性可以受到MBS,與內生性的去磷酸酶抑制蛋白CPI-17的磷酸化所調控。目前已知,Rho蛋白激酶可以磷酸化MBS的Thr694和Thr852,進而抑制肌凝蛋白去磷酸酶的活性。在動脈粥狀硬化的血管中,血管平滑肌的過度收縮,已知係Rho蛋白激酶不正常的活化所致;但是血管內負責調控收縮的蛋白在動脈粥狀硬化過程中表現量的變化目前所知仍有限。因此,本實驗主要的目的在探討肌凝蛋白去磷酸酶中MBS與PP1,在動脈粥狀硬化過程中其表現量的變化。
  本實驗首先利用免疫轉漬法和RT-PCR,來偵測8週到24週大的apoE基因剔除小鼠中MBS和PP1蛋白和mRNA的表現量。結果顯示,隨著apoE基因剔除小鼠週齡的增加,MBS蛋白在主動脈中的表現量有顯著下降的情形,尤其是在主動脈弓的位置;而在B6小鼠中MBS的表現量隨著週齡的增加並沒有變化。在MBS的磷酸化方面,利用可以偵測特定磷酸化位置的抗體,來偵測MBS在Thr694與Thr852磷酸化的情形。結果顯示,在這兩個位置的磷酸化程度在8到24週的apoE基因剔除小鼠並無差異。相對於MBS蛋白顯著的減少,利用RT-PCR的方法我們發現MBS的mRNA表現量並沒有伴隨著減少,這也意味著MBS蛋白的減少可能與蛋白的合成或降解有關。另外,PP1不論是蛋白質或是mRNA的表現量,在apoE基因剔除小鼠的動脈粥狀硬化過程中都沒有顯著的變化。Ubiquitin-proteasome系統是真核細胞負責蛋白降解主要的機制之一,而且在動脈粥狀硬化中這個機制的作用有增加的現象。因此,我們利用ubiquitin的抗體進行免疫沉澱,再以MBS的免疫轉漬法來偵測MBS 的ubiquitination。雖然MBS蛋白的表現量在apoE基因剔除小鼠的動脈粥狀硬化過程中有明顯下降,但是MBS ubiquitination的程度在12至24週之間並無顯著差異。另外,氧活化中間產物已被證實可調控基因的表現與蛋白的ubiquitination。在本實驗,將人類主動脈的平滑肌細胞以過氧化氫或可以刺激細胞產生超氧化物的LY83583處理後,並未減少MBS蛋白的表現量。本實驗主要發現主動脈之肌凝蛋白去磷酸酶中的MBS次單元其蛋白的表現量在apoE基因剔除小鼠的動脈粥狀硬化過程中顯著下降,但是另一個次單元PP1蛋白的表現並無變化。另外,由於MBS mRNA的表現量並無顯著差異,因此推測在動脈粥狀硬化的過程中血管平滑肌細胞內MBS蛋白的減少可能與蛋白合成減少或是蛋白降解增加有關。
英文摘要   Abnormal contractility of vascular smooth muscle is an important characteristic of cardiovascular diseases such as hypertension and atherosclerosis. Myosin phosphatase (MP), a major enzyme regulating smooth muscle contractility, is a heterotrimer consisting of a PP1 catalytic subunit, a 130-kDa myosin binding subunit (MBS) and a 20-kDa subunit of unknown function. Recent studies indicated that MP activity can be regulated by the phosphorylation of MBS and an endogenous phosphatase inhibitor CPI-17. Phosphorylation of MBS at Thr-694 and Thr-852 by Rho-kinase was demonstrated to inhibit MP activity. In atherosclerotic arteries, aberrant activation of Rho-kinase has been shown to mediate hypercontractility of vascular smooth muscle cells. In contrast, relatively little is known on the adaptation of contractile proteins during atherosclerosis progression. This study was aimed to investigate the expression and phosphorylation of MBS during atherosclerosis progression. In addition, the expression of PP1 was also examined.
  We first examined the expression levels of MBS and PP1 during atherosclerosis progression in apoE-knockout (apoE-KO) mice between 8 weeks and 24 weeks by immunoblotting and RT-PCR. The results showed that MBS protein levels in aorta significantly decreased as the age of apoE-KO mice increased especially in aortic arch whereas no difference was observed in B6 mice of similar age. Secondly, the phosphorylation level of MBS during atherosclerosis progression in apoE-KO mice between 8 and 24 weeks of age was examined by immunoblotting using antibodies against phospho-MBS. No difference of MBS phosphorylation at Thr694 and Thr852 was detected. In contrast to decreases in protein expression, MBS mRNA levels did not vary significantly between 8 weeks and 24 weeks, suggesting that decreased MBS protein levels is attributed to changes in protein synthesis or degradation. In the case of PP1, neither protein nor mRNA expression was changed in apoE-KO mice during atherosclerosis progression. The ubiquitin-proteasome system is the major intracellular protein degradation pathway in eukaryotic cells and has been shown to be up-regulated in atherosclerosis. To examine the ubiquitination of MBS during atherosclerosis progression, immunoprecipitation was performed using anti-ubiquitin antibody and analyzed by immunoblotting using anti-MBS antibody. In contrast to decreased MBS protein levels, no difference in the level of MBS ubiquitination was detected. Reactive oxygen species (ROS) has been reported to regulate genes expression and protein ubiquitination. Treatment of human aortic smooth muscle cells (HASMCs) with H2O2 or LY83583, which generates superoxide production, did not modify the expression of MBS as indicated by immunoblotting analysis. This study demonstrates that the expression of regulatory subunit of myosin phosphatase, MBS, but not catalytic subunit, PP1, decreased during atherosclerosis progression. Because no difference of MBS mRNA expression level was detected, thus, the decreased MBS protein level is probably attributed to decreased protein synthesis and/or increased protein degradation during atherosclerosis.
論文目次 Acknowledgements.............i
Chinese Abstract............iii
Abstract.....................v
Introduction.................1
Materials and Methods.......15
Results.....................24
Discussion..................29
References..................39
Figures.....................54
Table.......................68
Resume......................69
參考文獻 Andersen HR, Maeng M, Thorwest M, and Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation. 93: 1716-1724, 1996.

Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, and Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271: 20246-20249, 1996.

Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, and Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 275: 1308-1311, 1997.

Ames BN, Shigenaga MK, and Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 90: 7915-7922, 1993.

Arnold WP, Mittal CK, Katsuki S, and Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A. 74: 3203-3207, 1977.

Baas AS, and Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res. 77: 29-36, 1995.

Boger RH, Bode-Boger SM, and Frolich JC. The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis. 127: 1-11, 1996.

Bonthu S, Heistad DD, Chappell DA, Lamping KG, and Faraci FM. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 17: 2333-2340, 1997.

Cai H, and Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 87: 840-844, 2000.

Chew TL, Masaracchia R, and Wysolmerski RB. Phosphorylation of nonmuscle myosin II regulatory light chain by p21-activated kinase (-PAK). J Muscle Res Cell Motil. 19: 839-854, 1998.

Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, and Kaibuchi K. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem. 272: 25121-25127, 1997.

Eto Y, Shimokawa H, Hiroki J, Morishige K, Kandabashi T, Matsumoto Y, Amano M, Hoshijima M, Kaibuchi K, and Takeshita A. Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol. 278: H1744-1750, 2000.

Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, and Nakano T. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem. 274: 37385-37390, 1999.

Fukata Y, Amano M, and Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 22: 32-39, 2001.

Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, Takeya M, Yoshimura T, and Takeshita A. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension. 38: 100-104, 2001.

Furchgott RF, and Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 288: 373-376, 1980.

Glass CK, and Witztum JL. Atherosclerosis: the road ahead. Cell. 104: 503-516, 2001.

Goeckeler ZM, and Wysolmerski RB. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 130: 613-627, 1995.

Gong MC, Fuglsang A, Alessi D, Kobayashi S, Cohen P, Somlyo AV, and Somlyo AP. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 267: 21492-21498, 1992.

Gong MC, Iizuka K, Nixon G, Browne JP, Hall A, Eccleston JF, Sugai M, Kobayashi S, Somlyo AV, and Somlyo AP. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 93: 1340-1345, 1996.

Griendling KK, Minieri CA, Ollerenshaw JD, and Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 74: 1141-1148, 1994

Griendling KK, and Ushio-Fukai M. NADH/NADPH oxidase and vascular function. Trends Cardiovasc Med. 7: 301-307, 1997.

Griendling KK, Sorescu D, and Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 86: 494-501, 2000.

Hall A. Rho GTPases and the actin cytoskeleton. Science. 279: 509-514, 1998.

Harrison DG, Armstrong ML, Freiman PC, and Heistad DD. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest. 80: 1808-1811, 1987.

Hartshorne DJ, Ito M, and Erdodi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil. 19: 325-341, 1998.

Henry PD, and Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine mediated by a serotonergic mechanism. J Clin Invest. 66: 306-313, 1980.

Herrmann J, Gulati R, Napoli C, Woodrum JE, Lerman LO, Rodriguez-Porcel M, Sica V, Simari RD, Ciechanover A, and Lerman A. Oxidative stress-related increase in ubiquitination in early coronary atherogenesis. FASEB J. 17: 1730-1732, 2003.

Herrmann J, Ciechanover A, Lerman LO, and Lerman A. The ubiquitin-proteasome system in cardiovascular diseases: a hypothesis extended. Cardiovasc Res. 61: 11-21, 2004.

Hershko A. Ubiquitin-mediated protein degradation. J Biol Chem. 263: 15237-15240, 1988.

Hershko A, Ciechanover A, and Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med. 6: 1073-1081, 2000.

Himpens B, Matthijs G, and Somlyo AP. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 413: 489-503, 1989.

Himpens B, Kitazawa T, and Somlyo AP. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch. 417: 21-28, 1990.

Hirata K, Kikuchi A, Sasaki T, Kuroda S, Kaibuchi K, Matsuura Y, Seki H, Saida K, and Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 267: 8719-8722, 1992.

Hiroki J, Shimokawa H, Mukai Y, Ichiki T, and Takeshita A. Divergent effects of estrogen and nicotine on Rho-kinase expression in human coronary vascular smooth muscle cells. Biochem Biophys Res Commun. 326: 154-159, 2005.

Hofmann F, Ammendola A, and Schlossmann J. Rising behind NO: cGMP-dependent protein kinases. J Cell Sci. 113: 1671-1676, 2000.

Horowitz A, Menice CB, Laporte R, and Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 76: 967-1003, 1996.

Horwitz AR, and Parsons JT. Cell migration: movein’ on. Science. 286: 1102-1103, 1999.

Igarashi M, Kato T, Ohnuma H, Morita Y, Kawanami T, and Sasaki H. Ubiquitin expression in atherosclerotic lesions of wistar fatty and wistar lean rats. Artery. 21: 256-270, 1994.

Ignarro LJ, Buga GM, Wood KS, Byrns RE, and Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 84: 9265-9269, 1987.

Ikebe M, Hartshorne DJ, and Elzinga M. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem. 261: 36-39, 1986.

Ikebe M, Hartshorne DJ, and Elzinga M. Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation. J Biol Chem. 262: 9569-9573, 1987.

Irani K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res. 87: 179-183, 2000.

Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, and Narumiya S. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15: 1885-1893, 1996.

Jayakody L, Senaratne M, Thomson A, and Kappagoda T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res. 60: 251-264, 1987.

Kaibuchi K, Kuroda S, and Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem. 68: 459-486, 1999.

Kandabashi T, Shimokawa H, Mukai Y, Matoba T, Kunihiro I, Morikawa K, Ito M, Takahashi S, Kaibuchi K, and Takeshita A. Involvement of Rho-kinase in agonists-induced contractions of arteriosclerotic human arteries. Arterioscler Thromb Vasc Biol. 22: 243-248, 2002.

Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, and Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase during cell migration and cytokinesis. J Cell Biol. 147: 1023-1037, 1999.

Keaney JF Jr, Xu A, Cunningham D, Jackson T, Frei B, and Vita JA. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest. 95: 2520-2529, 1995.

Khatri JJ, Joyce KM, Brozovich FV, and Fisher SA. Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation. J Biol Chem. 276: 37250-37257, 2001.

Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 273: 245-248, 1996.

Kishi H, Bao J, and Kohama K. Inhibitory effects of ML-9, wortmannin, and Y-27632 on the chemotaxis of vascular smooth muscle cells in response to platelet-derived growth factor-BB. J Biochem. 128: 719-722, 2000.

Kitazawa T, and Somlyo AP. Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle. Biochem Biophys Res Commun. 172: 1291-1297, 1990.

Kitazawa T, Masuo M, and Somlyo AP. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A. 88: 9307-9310, 1991.

Kitazawa T, Eto M, Woodsome TP, and Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 275: 9897-9900, 2000.

Kitazawa T, Eto M, Woodsome TP, and Khalequzzaman M. Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol. 546: 879-889, 2003.

Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, and Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 475: 197-200, 2000.

Lee MR, Li L, and Kitazawa T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem. 272: 5063-5068, 1997.

Leung T, Manser E, Tan L, and Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 270: 29051-29054, 1995.

Liao F, Andalibi A, Qiao JH, Allayee H, Fogelman AM, and Lusis AJ. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest. 94: 877-884, 1994.

Liao DF, Jin ZG, Baas AS, Daum G, Gygi SP, Aebersold R, and Berk BC. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem. 275: 189-196, 2000.

Lusis AJ. Atherosclerosis. Nature. 407: 233-241, 2000.

Martinez MC, Randriamboavonjy V, Ohlmann P, Komas N, Duarte J, Schneider F, Stoclet JC, and Andriantsitohaina R. Involvement of protein kinase C, tyrosine kinases, and Rho kinase in Ca2+ handling of human small arteries. Am J Physiol. 279: H1228-1238, 2000.

Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, and Kaibuchi K. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15: 2208-2216, 1996.

Miller VM, Aarhus LL, and Vanhoutte PM. Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol. 251: H520-527, 1986.

Mishima M, and Mabuchi I. Cell cycle-dependent phosphorylation of smooth muscle myosin light chain in sea urchin egg extracts. J Biochem (Tokyo). 119: 906-913, 1996.

Miyata K, Shimokawa H, Kandabashi T, Higo T, Morishige K, Eto Y, Egashira K, Kaibuchi K, and Takeshita A. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol. 20: 2351-2358, 2000.

Mohazzab KM, Kaminski PM, and Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 266: 2568-2572, 1994.

Morishige K, Shimokawa H, Eto Y, Kandabashi T, Miyata K, Matsumoto Y, Hoshijima M, Kaibuchi K, and Takeshita A. Adenovirusmediated transfer of dominant-negative Rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo. Arterioscler Thromb Vasc Biol. 21: 548-554, 2001.

Mugge A, Elwell JH, Peterson TE, and Harrison DG. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol. 260: C219-225, 1991a.

Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, and Harrison DG. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 69: 1293-1300, 1991b.

Nakashima Y, Plump AS, Raines EW, Breslow JL, and Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 14: 133-140, 1994.

Narumiya S. The small GTPase Rho: cellular functions and signal transduction. J Biochem (Tokyo) 120: 215-228, 1996.

Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, and Fogelman AM. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 16: 831-842, 1996.

Nimnual AS, Taylor LJ, and Bar-Sagi D. Redox-dependent downregulation of Rho by Rac. Nat Cell Biol. 5: 236-241, 2003.

Nobes C, and Hall A. Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev. 4: 77-81, 1994.

Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, and Luscher TF. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation. 97: 2494-2498, 1998.

Ohara Y, Peterson TE, and Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 91: 2546-2551, 1993.

Palmer RM, Ashton DS, and Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 333: 664-666, 1988.

Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, and Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A. 89: 4471-4475, 1992.

Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, and Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 71: 343-353, 1992.

Reddick RL, Zhang SH, and Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 14: 141-147, 1994.

Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 340: 115-126, 1999.

Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362: 801-809, 1993.

Satterwhite LL, Lohka MJ, Wilson KL, Scherson TY, Cisek LJ, Corden JL, and Pollard TD. Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J Cell Biol. 118: 595-605, 1992.

Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Vaillant N, Gadeau AP, Desgranges C, Scalbert E, Chardin P, Pacaud P, and Loirand G. P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am J Physiol. 278: H1751-1761, 2000.

Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P, and Loirand G. Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rhokinase. Circ Res 88: 1102-1104, 2001.

Sawada N, Itoh H, Ueyama K, Yamashita J, Doi K, Chun TH, Inoue M, Masatsugu K, Saito T, Fukunaga Y, Sakaguchi S, Arai H, Ohno N, Komeda M, and Nakao K. Inhibition of Rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation. 101: 2030-2033, 2000.

Schroeder JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, and Wexler L. Provocation of coronary spasm with ergonovine maleate. Am J Cardiol. 40: 487-491, 1977.

Seasholtz TM, Majumdar M, Kaplan DD, and Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res. 84: 1186-1193, 1999.

Sellers JR, Pato MD, and Adelstein RS. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem. 256: 13137-13142, 1981.

Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, and Imaizumi T. Role of Rho-associated kinase in neointima formation after vascular injury. Circulation. 103: 284-289, 2001.

Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J. 64: 1-12, 2000.

Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y, Ikegaki I, Asano T, Kaibuchi K, and Takeshita A. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res. 51: 169-177, 2001.

Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 39: 319-327, 2002.

Shin HM, Je HD, Gallant C, Tao TC, Hartshorne DJ, Ito M, and Morgan KG. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Cir Res. 90: 546-553, 2002.

Somlyo AP, and Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 3: 2266-2276, 1989.

Somlyo AP, and Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 372: 231-236, 1994.

Somlyo AP, and Somlyo AV. From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand. 164: 437-448, 1998.

Somlyo AP, and Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 83: 1325-1358, 2003.

Sorescu D, Szocs K, and Griendling KK. NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc Med. 11: 124-131, 2001.

Steinbrecher UP, Zhang HF, and Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 9: 155-168, 1990.

Sundaresan M, Yu ZX, Ferrans VJ, Irani K, and Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 270: 296-299, 1995.

Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, and Mendelsohn ME. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase I alpha. Science. 286: 1583-1587, 1999.

Suzuki YJ, and Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol. 31: 345-353, 1999.

Takai Y, Sasaki T, and Matozaki T. Small GTP-binding proteins. Physiol Rev. 81: 153-208, 2001.

Takeda K, Ichiki T, Tokunou T, Iino N, Fujii S, Kitabatake A, Shimokawa H, and Takeshita A. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor-1 gene expression. Arterioscler Thromb Vasc Biol. 21: 868-873, 2001.

Tangkijvanich P, Tam SP, and Yee HF Jr. Wound-induced migration of rat hepatic stellate cells is modulated by endothelin-1 through Rho-kinase-mediated alterations in the actomyosin cytoskeleton. Hepatology. 33: 74-80, 2001.

Taniyama Y, and Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 42: 1075-1081, 2003.

Teoh H, Zacour M, Wener AD, Gunaratnam L, and Ward ME. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Am J Physiol. 284: H1182-1189, 2003.

Thyberg J, and Blomgren K. Effects of proteasome and calpain inhibitors on the structural reorganization and proliferation of vascular smooth muscle cells in primary culture. Lab Invest. 79: 1077-1088, 1999.

Turbedsky K, Pollard TD, and Bresnick AR. A subset of protein kinase C phosphorylation sites on the myosin II regulatory light chain inhibits phosphorylation by myosin light chain kinase. Biochemistry. 36: 2063-2067, 1997.

Trujillo M, Candenas L, Cintado CG, Magraner J, Fernandez J, Martin JD, and Pinto FM. Hormonal regulation of the contractile response induced by okadaic acid in the rat uterus. J Pharmacol Exp Ther. 296: 841-848, 2001.

Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 18 (Suppl E): E19-29, 1997.

van Nieuw Amerongen GP, Vermeer MA, and van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 20: E127-133, 2000a.

van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, and van Hinsbergh VW. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res. 87: 335-340, 2000b.

van Nieuw Amerongen GP, and van Hinsbergh VW. Cytoskeletal effects of Rho-like small guanine nucleotidebinding proteins in the vascular system. Arterioscler Thromb Vasc Biol. 21: 300-311, 2001.

Velasco G, Armstrong C, Morrice N, Frame S, and Cohen P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett. 527: 101-104, 2002.

Vieira O, Escargueil-Blanc I, Jurgens G, Borner C, Almeida L, Salvayre R, and Negre-Salvayre A. Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis. FASEB J. 14: 532-542, 2000.

Witztum JL, and Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 88: 1785-1792, 1991.

Wu X, Somlyo AV, and Somlyo AP. Cyclic GMP-dependent stimulation reverses G-protein-coupled inhibition of smooth muscle myosin light chain phosphate. Biochem Biophys Res Commun. 220: 658-663, 1996.

Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, and Inagami T. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 35: 313-318, 2000.

Yamamoto Y, Ikegaki I, Sasaki Y, and Uchida T. The protein kinase inhibitor fasudil protects against ischemic myocardial injury induced by endothelin-1 in the rabbit. J Cardiovasc Pharmacol. 35: 203-211, 2000.

Zeng Q, Lagunoff D, Masaracchia R, Goeckeler Z, Cote G, and Wysolmerski RB. Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci. 113: 471-482, 2000.

Zhang SH, Reddick RL, Piedrahita JA, and Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 258: 468-471, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-02-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-02-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw