進階搜尋


 
系統識別號 U0026-0812200911255154
論文名稱(中文) 燃油飛灰中未燃碳資源化之基礎研究
論文名稱(英文) Unburned carbon from oil-fired fly ash as a resource, a preliminary study
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 93
學期 1
出版年 94
研究生(中文) 謝雅敏
研究生(英文) Ya-Min Hsieh
電子信箱 n4887105@ccmail.ncku.edu.tw
學號 n4887105
學位類別 博士
語文別 中文
論文頁數 123頁
口試委員 口試委員-曾信雄
指導教授-蔡敏行
召集委員-柯澤豪
口試委員-朱信
指導教授-顏富士
口試委員-鄧熙聖
中文關鍵字 應用技術  未燃碳  燃油飛灰  性質調查 
英文關鍵字 utility technique  characteristics  oil-fired fly ash  unburned carbon 
學科別分類
中文摘要   燃油鍋爐燃燒重油釋放出熱量為發電或工業所利用的同時,也排放出大量二氧化碳氣體,以及由重油的硫、釩、鎳等成分與未完全燃燒的碳粒所構成的油灰。此等油灰被鍋爐配備的集塵器所捕集者是為燃油飛灰。燃油飛灰含1~2%的釩、鎳等有價金屬,先進國家大都已設廠進行回收處理,而剩餘大量的未燃碳殘留物,目前則被視為廢棄物一般,採用焚化或掩埋加以處置。但是焚化處置時遭遇燃燒效率低的難題,而掩埋則有浪費大量碳物質的疑慮。依台灣地區每年燃燒重油約1500萬公秉加以推估,約發生燃油飛灰4.3萬公噸,若經過釩、鎳回收製程,殘留未燃碳可達約2萬公噸以上。由於文獻中與未燃碳基礎性質相關的資料十分缺乏,無從提出適合的處置或回收利用,因此為提供相關資訊,作為將來未燃碳有效處置或回收利用的參考,本論文從多處燃油鍋爐的集塵設備中取樣燃油飛灰,經各種浸漬處理取得未燃碳的觀察樣品,進行物理化學性質調查研究,由結果說明未燃碳的特性。另外也依據所掌握的特性,從事兩項應用技術研究,利用活化處理提高未燃碳吸附容量之研究,以及利用超音波處理從未燃碳生產微細碳粉之初步研究,提出未燃碳作為吸附材料的處理方法以及作為微細石墨粉生產原料的可行性。
  結果顯示,利用浸漬方式可以從燃油飛灰中獲得未燃碳含量約73~91%、灰份5.0~19%、揮發份2.5~11.5%,以及水分2%以下的觀察樣品,樣品的碳含量隨浸漬條件不同而呈現相應差異。未燃碳外表為輕質蓬鬆易隨風飛揚的黑色粉末,由1~100μm左右的顆粒所構成,視密度在0.15 g/cm3左右。具有吸附染料的能力,比表面積在16~33 m2/g,惟吸附容量不及活性碳,如對酸性染料的吸附容量約為活性碳的7~23%左右。未燃碳組成顆粒可依表面特徵大致分為兩類,其一表面較為平滑,且富含1至5微米的孔洞,看似平滑的表面上有流動狀紋路。另外一類的表面為尖銳角狀,顆粒內的孔洞容積比例很大。此類顆粒的機械強度相對較弱,經超音波處理易破碎。在結晶性質方面,未燃碳大致上是由兩種非晶質碳成分所構成,主要成份的d(002)為 3.47~3.49Å,經過熱處理後成為石墨,在熱處理過程中此成分的d(002)變化類似於石油煅燒焦炭;另一種是次要成分,d(002)約3.82~4.04Å,有不易石墨化的特性,性質類似於碳煙。
  未燃碳經過活化處理可以提高比表面積與吸附容量,在1100°C下與CO2反應,比表面積由16.6~33.3m2/g增加至113~235m2/g,對亞甲藍染料的吸附值由6.5~6.8mg/g增加至154~174mg/g,達到相近於市售活性碳172 mg/g的性能,大幅提高未燃碳作為吸附材料的實用價值。由孔隙分佈的觀察結果,活化處理可使未燃碳顆粒表面大小約0.01~0.1µm的孔隙明顯增加,顆粒表面凹凸紋路更顯著、高低差增大,推測在紋路凹處與凸處的組成碳成分可能有不同的反應速率所致。
  在生產微細石墨粉原料之研究結果方面,依據未燃碳部分組成顆粒易破碎的特性,初步獲得利用超音波處理與配合篩分回收方式的生產流程。實驗結果顯示,所得微細產物的重量比例約為起始原料的1/4~1/3,粒徑分佈有80%在12µm以下,平均粒徑在6~7µm左右,灰份在0.5%左右,導電性質介於石墨與碳黑之間,大致符合微細石墨粉原料的要求。至於篩上的粗粒部份,可再經過氧化處理,使其形成發泡狀顆粒,再重複經由超音波處理生產微細石墨粉原料,或者可當一般碳材料或石墨材料使用的資源。


英文摘要  nburned carbon, a byproduct accompanying with the heavy fuel oil burning, is collected by dust collectors and becomes the major constitute of oil-fired fly ash. The annual domestic consumption of burning heavy oil for producing energy was about 15 million kiloliters, which meanwhile produced 43 thousand tons of oil-fired fly ash per year. If such oil-fired fly ash totally subjects to through the metallic recovery process for vanadium and nickel products, it raises enormous waste of carbon more than 20 thousand tons per year, which now is disposed in landfills, or by incineration as general wastes under poor combustion efficiency. The related scientific literature about the unburned carbon remains lack. Besides, it is hard to propose any practicable utilities with current knowledge base. In order to provide characteristics of unburned carbon for further utilities, this thesis purposed on fundamental studies including chemical, physical and crystalline properties to address its characters and potential applications for future; meanwhile, this thesis also advanced two technical researches on unburned carbon utilities. One is to increase adsorptive capacity of unburned carbon by activation with carbon dioxide, and the other is to refine carbon powder from unburned carbon under ultrasonic wave. With those treatments unburned carbon could be respectively applied as adsorbents and the raw material of fine graphite powder.
 Unburned carbon can be recovered thoroughly from oil-fired fly ash by leaching process with the chemical compositions almost identical despite different oil-fired fly ashes and leaching processes. The product, consisting of 73~91% of carbon, 5~19% of ash, 2.5~11.5% of volatile content and 0.7~1.9% of water content, presented as a light and black powder with a packing density about 0.15 g/cm3, and possessed adsorptive ability with specific surface area about 16~33 m2/g; meanwhile its adsorptive capacity to acid dyeing wastewater was about 7~23% smaller than that of active carbon. The composed particles of unburned carbon with particle sizes mainly 1~100μm could be divided into two categories by particle surface features. The first type had smooth surface, contained pores at size about 1~5μm, and formed a flow-like pattern on its smooth surface. The second type had a jagged surface and a much larger pore volume, with poor mechanical strength which would be crumbled by ultrasonic wave.
 For crystalline property, unburned carbon is amorphous, comprising mainly graphitizable and minor non-graphitazable micro-crystallites. The graphitizable form, d(002) of 3.47~3.48Å and Lc of 22~25Å, were transferred into crystalline graphite with d(002) ~ 3.38 Å and Lc ~200Å after heat treatment at 2700˚C. Its crystallographic characters approach to those of petroleum coke preceded by calcinations at 1300~1400°C, which is prior to being used as the raw material of fine graphite materials. The non-graphitizable form, exhibiting d(002) of 3.82~4.04Å and Lc of 12~17Å, were transferred into species with d(002) of ~3.42Å after heat treatment at 2700˚C and presented as soot particles in combustion chambers. Since such soot is not commercially available with specification and utility, the usage for the non-graphitizable carbon is not commanded.
In the study, unburned carbon demonstrated larger adsorptive capability after activation. While reacting with CO2 at 1100°C, the methylene blue numbers reach to 154~174 mg/g, which equaled to the 172 mg/g of active carbon and signified the actual utility as adsorbents in wastewater treatment. After activation, all carbons formed new pores in a mutual size, approximately 0.1~0.01µm. In addition, the flow-like patterns on particle surface become more remarkable, which determined the sunken and the convex on the flow-like patterns might be different at reacting rate of activation.
 In the study of the precursor production of fine graphite powder from unburned carbon, a production process has been proposed. The obtained product, about 1/4~1/3 to the precursor, featured the properties: the size formed 80% finer than 12µm with a mean particle size about 6~7µm; the ash content existed few about 0.5%; besides, it behaved electric conductivity between graphite powder and carbon black. In conclusion, the product was explored to the raw material of fine graphite powder as a promising utility. As to the coarse product, it also can be used as the raw material in fine graphite powder production by oxidation treatment, or used as general carbon resource.


論文目次 中文摘要 I
ABSTRACT VI
致謝 IX
目錄 X
表目錄 XV
圖目錄 XVII
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的與架構 6
1-3 研究限制 9
第二章 未燃碳物理化學性質之研究 10
2-1 前言 10
2-2 實驗方法 12
2-2-1 樣品來源與準備 12
2-2-2 SEM外觀觀察 12
2-2-3 密度測定 12
2-2-4 比表面積測定 13
2-2-5 粒徑測定 13
2-2-6 熱重分析 13
2-2-7 成分分析 13
2-2-8 灰分之組成物分析 14
2-2-9 染料吸附實驗方法 14
2-3 結果與討論 16
2-3-1 燃油飛灰之物化性質 16
2-3-2 未燃碳之外觀與分類 20
2-3-3 未燃碳之粒徑、比表面積、密度 25
2-3-4 未燃碳之熱分解 29
2-3-5 未燃碳的吸附性質 31
2-3-6 未燃碳觀察樣品的化學組成 33
2-4 結論 36
第三章 以XRD與TEM分析未燃碳結晶性質之研究 37
3-1 前言 37
3-2理論基礎 38
3-2-1石墨與非晶質碳的構造 38
3-2-2碳材料的石墨化 40
3-3 實驗方法 42
3-3-1樣品來源與準備 42
3-2-2 X-光繞射鑑定 42
3-2-3 TEM顯微觀察與電子繞射分析 44
3-2-4 熱處理實驗 44
3-3 結果與討論 45
3-3-1 樣品與性質 45
3-3-2 X-光繞射分析結果 45
3-3-3 TEM觀察 50
3-3-4 熱處理的影響 52
3-3-5 未燃碳與相關碳材料的比較 59
3-4 結論 61
第四章 藉活化處理方式改善未燃碳吸附容量之研究 62
4-1 前言 62
4-2 實驗方法 65
4-2-1 樣品來源 65
4-2-2 活化反應實驗方法 65
4-2-3 分析方法 65
4-3 結果與討論 67
4-3-1 樣品性質 67
4-3-2 產率 69
4-3-3 比表面積 72
4-3-4 吸附容量 74
4-3-5 孔隙分布 77
4-4 結論 81
第五章 未燃碳生產微細石墨粉原料之初步研究 82
5-1前言 82
5-2實驗與分析方法 88
5-2-1 樣品準備 88
5-2-2 超音波處理實驗 88
5-2-3 氧化處理實驗 89
5-2-4 分析方法 89
5-3 結果與討論 91
5-3-1 超音波輸出功率與處理時間對產率的影響 91
5-3-2 細粒產物的成分 95
5-3-3 細粒產物的外觀與粒徑 97
5-3-4 細粒與粗粒產物結晶性質的比較 102
5-3-5 氧化處理的影響 106
5-3-6 產物與市售產品電阻率的比較 109
5-4 結論 112
第六章 總結論與建議 113
6-1 總結論 113
6-2 建議 115
參考文獻 116

參考文獻 1.蔡尚林、蔡敏行,“燃油飛灰性質、發生量及溶出試驗研究”,礦冶,vol.41,no.2,pp.57-68,1997。
2.E.G. Masdin and P.J.Foster, The size and structure of cenospheres formed from residual liquid fuels, Fuel, vol.39, pp.413-419, 1960.
3.Takeshi Sakai and Sachio Sugiyama, Residual carbon particles yielded by combustion of atomized heavy-fuel-oil droplets. Journal of the Institute of Fuel, vol.43, no.8, pp.295-300, 1970.
4.Thomas, Carbon formation in flames, Combustion and flame, vol.6, no.1, pp.46-63, 1962.
5.L. Maraval, Characteristics of soot collected in industrial diffusion flames, Combustion science and technology, vol.5, pp.207-212, 1972.
6.火力原子力発電技術協會,“燃料および燃燒:VI.石油燃燒”,火力原子力発電(日刊),vol.39,no.12,pp.1453-1483,1988。
7.林俊雄,“石油提煉”,科學發展期刊,vol.9310,pp.24-29。
8.行政院經濟部能源委員會,中華民國九十二年能源統計手冊。
9.A.G. Lazarus, Physical facility design for oil-fired boiler sludge, Power engineering, March, pp. 74-76, 1981.
10.V.T. Breslin, Physical and chemical behavior of stabilized oil ash waste in seawater, 6th International ocean disposal symposium, April, Pacific grove California, USA, 1986.
11.陳燦堂等,“含油泥、含油污泥及油灰於燃煤機組混燒之前處理與材料腐蝕評估”,台灣電力公司86年度研究發展專題,1997。
12.蔡敏行等,“燃油飛灰淨化處理副產物與市場調查研究”,台電工程月刊,vol.620,pp.59-75,1999。
13.日刊工業新聞社編輯委員會,“公害防止ハソドブック”, pp.270-173,1974。
14.楊國華主編,碳素材料(下册),北京:中國物資出版社,1999。
15.Carbon products consortium, The carbon products industrial version in the future, Cross-cutting technologies publications, West Virginia university, 1998. http://iofwv.nrcce.wvu.edu/publications/CARBON.PDF
16.吳明偉,陳柏元,“煤焦油工業前景”,中碳技術快報,vol.121,pp.1-2,2003。
17.徐惠美,“活性碳—因環保而需求活絡”,ITIS產業評析總覽,2002。www.itri.org.tw/chi/services/ieknews/iek_news_cat.jsp
18.蔡尚林,燃油飛灰性質與資源化之研究,博士論文,國立成功大學,1999。
19.Norio Kaneko, Toshiaki Akahoshi, Akira Sakuma, Haruo Ohyama and Masami Iijima, Recovery of valuables from oil fly ash. Chemical engineering (日化—日文期刊), vol.56, no.6, pp.389-391, 1992.
20.H. Otterturn and E. Standell, Solvent extraction of vanadium (IV) with di(2-ethyl-hexyl) phosphoric acid and tributylphosphate, CIM, vol.21, pp.501-508, 1979.
21.W. Whigham, New in extraction: Vanadium from petroleum, Chemical Engineering, March 1, pp.64-65, 1965.
22.Philippe Guillaud, Process for treatment of vanadium containing fly ash, U.S.Patent 3873669, 1975.
23.Shigendo Akita, Tsuyoshi Maeda and Hiroshi Takeuchi, Recovery of vanadium and nickel in fly ash from heavy oil, J. Chem. Tech. Biotechol., vol.62, pp.345-350, 1995.
24.M. William, H. Kenneth and T. Knapp, Compound forms of fossil fuel fly ash emissions, Environmental science & technology, vol.14, no.4, pp.450-456, 1980.
25.望熙榮譯,C. D. Cooper and F. C. Alley著, 空氣污染防治,中央圖書出版社,台北, pp.93-101, 1998.
26.Eli M. Dannenberg, Encyclopedia of chemical technology, John wiley & sons, New York, vol.4, pp.631-666.
27.謝雅敏,燃油飛灰中碳資源之應用研究,成功大學碩士論文,中華民國87年。
28.S.B. Seeley. Encyclopedia of chemical technology, John wiley & sons, New York, vol.4, pp.689-709, 1991.
29.L.L. Winter, Encyclopedia of chemical technology, John wiley & sons, New York, vol.4, pp.570-576, 1991.
30.E.M. Dannenberg, Encyclopedia of chemical technology, John wiley & sons, New York, vol.4, pp.631-635, 1991.
31.T.T. Chen and S.T. Kuo, An evaluation on the corrosion of the super heater by adding oil fly ash in coal, PC Magazine, vol.571, pp.9-28, 1996.
32.Kim Kinoshita, Carbon – electrochemical and physicochemical properties, John wiley & sons, New York, pp.86-93, 1988.
33.James S. Mattson and Harry B. Mark, Jr.. Activated carbon. Marcel Dekker, New York, pp.25-36, 1971.
34.賴耿陽,碳化學工學,復漢出版社,台北,pp.7-23,1995。
35.Jean-Baptiste Donnet and Andries Voet, Carbon black — physics, chemistry and elastomer reinforcement, Marcel Dekker, London, pp.87-111, 1976.
36.V.V. Kovalevski, P.R. Buseck and J.M. Cowley, Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study, Carbon, vol.39, pp.243-256, 2001.
37.N.S. Murthy, S.O. Dantas, Z. Iqbal and R.H. Baughman, X-ray diffraction evidence for the formation of a discotic phase during graphitization, Carbon, vol.39, pp.809-813, 2001.
38.B.E. Warren and P. Bodenstein, The diffraction pattern of fine particle carbon blacks, Acta cryst, vol.18, pp.282-286, 1965.
39.R.E. Fanklin, The interpretation of diffuse X-ray diagrams of carbon, Acta Cryst, vol.3, pp.107-121, 1950.
40.許樹恩、吳泰伯編,X光繞射原理與晶體結構分析,中國材料學會出版,台北,pp.219-240,1990。
41.J.I. Langford, A rapid method for analyzing the breadths of diffraction and spectral lines using the voigt function, J. appl. Cryst., vol.11, pp.10-14, 1978.
42.Kim Kinoshita, Carbon – electrochemical and physicochemical properties, John wiley & sons, New York, pp.20-37, 1988.
43.David B. Williams and C. Barry Carter, Transmission electron microscopy: A textbook for Materials Science, Plenum Press, New York, pp.155-172, 1996.
44.R.E. Franklin, The interpretation of diffuse X-ray diagrams of carbon, Acta Cryst. vol.3, pp.107-121, 1950.
45.N.S. Murthy, S.O. Dantas, Z. Iqbal, R.H. Baughman, X-ray diffraction evidence for the formation of a discotic phase during graphitization, Carbon, vol.39, pp.809-813, 2001.
46.R.E. Franklin, The structure of graphitic carbons, Acta. cryst., vol.4, pp.253-261, 1951.
47.W.V. Kotlensky, P.L. Walker,Jr., Crystallographic and physical changes of some carbons upon oxidation and heat treatment, Proc. 4th conf. on carbon. pp.423-442, 1960.
48.M. Kakuta, H. Yamasaki, H. Tanaka, J. Sato, K. Noguchi, New calcining technology of petroleum coke, Petroleum-derived carbons, In ACS symposium series 303, pp.179-199, 1986.
49.W.M. Goldberger, P.R. Carney, R.F. Mabel, F.J. Deutschle, Granular graphitic carbon, Petroleum-Derived Carbons, In ACS Symposium Series 303, pp.200-214, 1986.
50.E.A. Heintz, Effect of calcination rate on petroleum coke properties, Carbon, vol.33, no.6, pp.817-820, 1995.
51.Oberlin, S. Bonnamy, X. Bourrat, M. Monthioux, J.N. Rouzaud, Electron microscopic observations on carbonization and graphitization, In ACS Symposium Series 303, 1986; 85-98.
52.MILAN SMÍŠEK and SLAVOJ ČERNÝ, Active carbon — manufacture, properties and applications; Elsevier publishing company: New York, pp.49-61, 1970.
53.James S. Mattson, Activated carbon, Marcel Dekker, New York, pp.9-24, 1971.
54.Helena Jankowaka, Andrzej Świątkowski and Jerzy Choma, Tansalated by T.J.Kemp, Active carbon, Ellis Horwood Limited, West Sussex, pp.13-29, 1991.
55.Y. Sanada, M. Suzuki and K. Fujimoto, New active carbon — fundamental and application, Kodansha Ltd, Tokyo, pp.47-66, 1992.
56.H. Kitagawa, Preparation and specific surface area of active carbon from plastics, J. of chemical engineering of Japan, vol.7, pp.1336-1341, 1974.
57.M. Kruk, Z. Li and M. Jaroniec, Nitrogen adsorption study of surface properties of graphitized carbon blacks, Langmuir, vol.15, pp.1435-1441, 1999.
58.J. P. Blakely and L.G. Overholser, Oxidation of ATJ graphite by low concentrations of water vapor and carbon dioxide in helium, Carbon, vol.3, pp.269-275, 1965.
59.Chiaki Ishii and Katsumi Kaneko, Surface and physical properties of microporous carbon spheres, Progress in organic coatings, vol.31, pp.147-152, 1997.
60.李源弘,高密度等方性人工石墨材料用焦炭之改質研究,國科會專題研究成果報告NSC76-0405-E002-005,1988。
61.楊國華主編,碳素材料(上册),中國物資出版社,北京,1999。
62.http://www.infitron.com.cn/infitron/chn/support.htm
63.K.A. Kusters, S.E. Pratsinis, S.G. Thoma, D.M. Smith, "Energy Size Reduction Laws for Ultrasonic Grinding", Powder Technology, vol.80, pp.253-263, 1994.
64.K.A. Kusters, S.E. Pratsinis, S.G. Thoma, D.M. Smith, "Modeling Ultrasonic Fragmentation of Suspended Particles", Chem. Eng. Sci., vol.48, pp.4119-4127, 1993.
65.渡 真治郎,炭素材料學會 編,活性炭-基礎と應用,pp.79-128,1975。
66.朱建平,含自生性潤滑石墨之金屬及陶瓷複合材料磨潤研究,國科會專題研究成果報告NSC 80-0405-E006-39,1992。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-02-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-02-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw